Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.05274
Cited By
Affine Disentangled GAN for Interpretable and Robust AV Perception
6 July 2019
Letao Liu
Martin Saerbeck
Justin Dauwels
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Affine Disentangled GAN for Interpretable and Robust AV Perception"
13 / 13 papers shown
Title
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
116
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
143
1,475
0
29 Nov 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
86
1,179
0
17 May 2018
Inferencing Based on Unsupervised Learning of Disentangled Representations
Tobias Hinz
S. Wermter
GAN
30
6
0
07 Mar 2018
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
80
283
0
13 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,151
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
185
2,731
0
19 May 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
549
5,912
0
08 Jul 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
163
4,240
0
12 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
96
142
0
31 May 2016
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
309
14,032
0
19 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
156
4,910
0
14 Nov 2015
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
318
7,401
0
05 Jun 2015
1