ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04669
  4. Cited By
Optimal Explanations of Linear Models

Optimal Explanations of Linear Models

8 July 2019
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Optimal Explanations of Linear Models"

13 / 13 papers shown
Title
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
114
1,865
0
31 May 2018
Interpretable & Explorable Approximations of Black Box Models
Interpretable & Explorable Approximations of Black Box Models
Himabindu Lakkaraju
Ece Kamar
R. Caruana
J. Leskovec
FAtt
79
254
0
04 Jul 2017
Interpreting Blackbox Models via Model Extraction
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
103
173
0
23 May 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAIFaML
420
3,824
0
28 Feb 2017
Simple rules for complex decisions
Simple rules for complex decisions
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
D. Goldstein
CML
62
105
0
15 Feb 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaMLAILaw
71
1,904
0
28 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,716
0
10 Jun 2016
Scalable Bayesian Rule Lists
Scalable Bayesian Rule Lists
Hongyu Yang
Cynthia Rudin
Margo Seltzer
TPM
55
211
0
27 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
Interpretable classifiers using rules and Bayesian analysis: Building a
  better stroke prediction model
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
72
745
0
05 Nov 2015
Best Subset Selection via a Modern Optimization Lens
Best Subset Selection via a Modern Optimization Lens
Dimitris Bertsimas
Angela King
Rahul Mazumder
460
665
0
11 Jul 2015
The Bayesian Case Model: A Generative Approach for Case-Based Reasoning
  and Prototype Classification
The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification
Been Kim
Cynthia Rudin
J. Shah
81
321
0
03 Mar 2015
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Berk Ustun
Cynthia Rudin
134
354
0
15 Feb 2015
1