Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.04489
Cited By
Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems
10 July 2019
M. Lutter
Kim D. Listmann
Jan Peters
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems"
18 / 18 papers shown
Title
Geometric Fault-Tolerant Neural Network Tracking Control of Unknown Systems on Matrix Lie Groups
Robin Chhabra
Farzaneh Abdollahi
41
0
0
07 May 2025
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay Atanasov
54
10
0
17 Jan 2024
Discovering interpretable Lagrangian of dynamical systems from data
Tapas Tripura
S. Chakraborty
27
4
0
09 Feb 2023
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Valentin Duruisseaux
T. Duong
Melvin Leok
Nikolay Atanasov
DRL
AI4CE
31
12
0
29 Nov 2022
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
Moritz Reuss
Niels van Duijkeren
R. Krug
P. Becker
Vaisakh Shaj
Gerhard Neumann
9
5
0
27 May 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
32
5
0
20 Jan 2022
Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics
Zhichao Li
T. Duong
Nikolay Atanasov
32
2
0
09 Dec 2021
A Differentiable Newton-Euler Algorithm for Real-World Robotics
M. Lutter
Vallijah Subasri
Joe Watson
Frank Rudzicz
29
7
0
24 Oct 2021
Continuous-Time Fitted Value Iteration for Robust Policies
M. Lutter
Boris Belousov
Shie Mannor
Dieter Fox
Animesh Garg
Jan Peters
10
9
0
05 Oct 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
43
39
0
05 Oct 2021
Learning Dynamics Models for Model Predictive Agents
M. Lutter
Leonard Hasenclever
Arunkumar Byravan
Gabriel Dulac-Arnold
Piotr Trochim
N. Heess
J. Merel
Yuval Tassa
AI4CE
57
26
0
29 Sep 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
35
0
12 Feb 2021
Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
OffRL
29
33
0
03 Nov 2020
A Differentiable Newton Euler Algorithm for Multi-body Model Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
21
11
0
19 Oct 2020
Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics
Manuel A. Roehrl
Thomas Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
PINN
24
77
0
29 May 2020
Structured Mechanical Models for Robot Learning and Control
Jayesh K. Gupta
Kunal Menda
Zachary Manchester
Mykel J. Kochenderfer
DRL
26
34
0
21 Apr 2020
HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints
M. Lutter
Boris Belousov
Kim D. Listmann
Debora Clever
Jan Peters
11
22
0
13 Sep 2019
Wasserstein Robust Reinforcement Learning
Mohammed Abdullah
Hang Ren
Haitham Bou-Ammar
Vladimir Milenkovic
Rui Luo
Mingtian Zhang
Jun Wang
32
75
0
30 Jul 2019
1