Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.03452
Cited By
Deep splitting method for parabolic PDEs
8 July 2019
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep splitting method for parabolic PDEs"
23 / 23 papers shown
Title
A convergent scheme for the Bayesian filtering problem based on the Fokker--Planck equation and deep splitting
Kasper Bågmark
Adam Andersson
S. Larsson
Filip Rydin
79
0
0
20 Jan 2025
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
203
6
0
27 Nov 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
28
0
0
21 Aug 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
45
7
0
08 May 2024
A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
Lorenc Kapllani
Long Teng
33
2
0
12 Apr 2024
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
35
5
0
26 Apr 2023
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations
Jiang Yu Nguwi
Nicolas Privault
49
5
0
28 Sep 2022
Is
L
2
L^2
L
2
Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
Chuwei Wang
Shanda Li
Di He
Liwei Wang
AI4CE
PINN
31
28
0
04 Jun 2022
A deep branching solver for fully nonlinear partial differential equations
Jiang Yu Nguwi
Guillaume Penent
Nicolas Privault
14
14
0
07 Mar 2022
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
34
19
0
18 Jan 2022
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
31
27
0
07 Dec 2021
Computation of conditional expectations with guarantees
Patrick Cheridito
Balint Gersey
6
2
0
03 Dec 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Friedrichs Learning: Weak Solutions of Partial Differential Equations via Deep Learning
Fan Chen
J. Huang
Chunmei Wang
Haizhao Yang
28
30
0
15 Dec 2020
Solving non-linear Kolmogorov equations in large dimensions by using deep learning: a numerical comparison of discretization schemes
Raffaele Marino
N. Macris
24
16
0
09 Dec 2020
Convergence of Deep Fictitious Play for Stochastic Differential Games
Jiequn Han
Ruimeng Hu
Jihao Long
19
19
0
12 Aug 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Weak error analysis for stochastic gradient descent optimization algorithms
A. Bercher
Lukas Gonon
Arnulf Jentzen
Diyora Salimova
28
4
0
03 Jul 2020
Space-time deep neural network approximations for high-dimensional partial differential equations
F. Hornung
Arnulf Jentzen
Diyora Salimova
AI4CE
29
19
0
03 Jun 2020
Uniform error estimates for artificial neural network approximations for heat equations
Lukas Gonon
Philipp Grohs
Arnulf Jentzen
David Kofler
David Siska
29
34
0
20 Nov 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
29
33
0
11 Aug 2019
1