Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.03372
Cited By
QUOTIENT: Two-Party Secure Neural Network Training and Prediction
8 July 2019
Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adria Gascon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QUOTIENT: Two-Party Secure Neural Network Training and Prediction"
18 / 18 papers shown
Title
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
47
0
21 Feb 2023
SecSkyline: Fast Privacy-Preserving Skyline Queries over Encrypted Cloud Databases
Yifeng Zheng
Weibo Wang
Songlei Wang
Xiaohua Jia
Hejiao Huang
Cong Wang
16
7
0
15 Sep 2022
Adversarial Representation Sharing: A Quantitative and Secure Collaborative Learning Framework
Jikun Chen
Feng Qiang
Na Ruan
FedML
14
1
0
27 Mar 2022
Report: State of the Art Solutions for Privacy Preserving Machine Learning in the Medical Context
J. Zalonis
Frederik Armknecht
Björn Grohmann
Manuel Koch
30
4
0
27 Jan 2022
Optimizing Secure Decision Tree Inference Outsourcing
Yifeng Zheng
Cong Wang
Ruochen Wang
Huayi Duan
Surya Nepal
11
6
0
31 Oct 2021
SEDML: Securely and Efficiently Harnessing Distributed Knowledge in Machine Learning
Yansong Gao
Qun Li
Yifeng Zheng
Guohong Wang
Jiannan Wei
Mang Su
32
3
0
26 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
MPC-Friendly Commitments for Publicly Verifiable Covert Security
Nitin Agrawal
James Bell
Adria Gascon
Matt J. Kusner
26
4
0
15 Sep 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
32
100
0
10 Aug 2021
Defending against Reconstruction Attack in Vertical Federated Learning
Jiankai Sun
Yuanshun Yao
Weihao Gao
Junyuan Xie
Chong-Jun Wang
AAML
FedML
24
28
0
21 Jul 2021
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs
Mohammad Malekzadeh
Anastasia Borovykh
Deniz Gündüz
MIACV
14
42
0
25 May 2021
Privacy-preserving Decentralized Aggregation for Federated Learning
Beomyeol Jeon
S. Ferdous
Muntasir Raihan Rahman
A. Walid
FedML
25
52
0
13 Dec 2020
Secure Medical Image Analysis with CrypTFlow
Javier Alvarez-Valle
Pratik Bhatu
Nishanth Chandran
Divya Gupta
A. Nori
Aseem Rastogi
Mayank Rathee
Rahul Sharma
Shubham Ugare
MedIm
18
13
0
09 Dec 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
11
153
0
01 Sep 2020
VFL: A Verifiable Federated Learning with Privacy-Preserving for Big Data in Industrial IoT
Anmin Fu
Xianglong Zhang
N. Xiong
Yansong Gao
Huaqun Wang
FedML
16
174
0
27 Jul 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
28
94
0
08 Jun 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
33
295
0
05 Apr 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Yang Liu
Zhuo Ma
Ximeng Liu
Jian-wei Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
20
61
0
24 Mar 2020
1