ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05064
8
13

Secure Medical Image Analysis with CrypTFlow

9 December 2020
Javier Alvarez-Valle
Pratik Bhatu
Nishanth Chandran
Divya Gupta
A. Nori
Aseem Rastogi
Mayank Rathee
Rahul Sharma
Shubham Ugare
    MedIm
ArXivPDFHTML
Abstract

We present CRYPTFLOW, a system that converts TensorFlow inference code into Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build two components. Our first component is an end-to-end compiler from TensorFlow to a variety of MPC protocols. The second component is an improved semi-honest 3-party protocol that provides significant speedups for inference. We empirically demonstrate the power of our system by showing the secure inference of real-world neural networks such as DENSENET121 for detection of lung diseases from chest X-ray images and 3D-UNet for segmentation in radiotherapy planning using CT images. In particular, this paper provides the first evaluation of secure segmentation of 3D images, a task that requires much more powerful models than classification and is the largest secure inference task run till date.

View on arXiv
Comments on this paper