Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.02957
Cited By
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
5 July 2019
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions"
20 / 20 papers shown
Title
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
MingWei Zhou
Xiaobing Pei
AAML
259
0
0
30 Mar 2025
Unveiling AI's Blind Spots: An Oracle for In-Domain, Out-of-Domain, and Adversarial Errors
Shuangpeng Han
Mengmi Zhang
208
0
0
03 Oct 2024
Releasing Inequality Phenomena in
L
∞
L_{\infty}
L
∞
-Adversarial Training via Input Gradient Distillation
Junxi Chen
Junhao Dong
Xiaohua Xie
AAML
25
0
0
16 May 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
49
14
0
24 Mar 2023
TextShield: Beyond Successfully Detecting Adversarial Sentences in Text Classification
Lingfeng Shen
Ze Zhang
Haiyun Jiang
Ying-Cong Chen
AAML
51
5
0
03 Feb 2023
Activation Learning by Local Competitions
Hongchao Zhou
AAML
37
7
0
26 Sep 2022
Rethinking Textual Adversarial Defense for Pre-trained Language Models
Jiayi Wang
Rongzhou Bao
Zhuosheng Zhang
Hai Zhao
AAML
SILM
28
11
0
21 Jul 2022
Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral Defenders
Jiahao Qi
Z. Gong
Xingyue Liu
Kangcheng Bin
Chen Chen
Yongqiang Li
Wei Xue
Yu Zhang
P. Zhong
AAML
42
6
0
16 Jul 2022
Learning with Capsules: A Survey
Fabio De Sousa Ribeiro
Kevin Duarte
Miles Everett
Georgios Leontidis
M. Shah
3DPC
MedIm
47
19
0
06 Jun 2022
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
20
48
0
18 Mar 2022
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
41
236
0
01 Aug 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
WaveGuard: Understanding and Mitigating Audio Adversarial Examples
Shehzeen Samarah Hussain
Paarth Neekhara
Shlomo Dubnov
Julian McAuley
F. Koushanfar
AAML
33
71
0
04 Mar 2021
Effective and Efficient Vote Attack on Capsule Networks
Jindong Gu
Baoyuan Wu
Volker Tresp
AAML
19
26
0
19 Feb 2021
Hierarchical Graph Capsule Network
Jinyu Yang
P. Zhao
Yu Rong
Chao-chao Yan
Chunyuan Li
Hehuan Ma
Junzhou Huang
29
30
0
16 Dec 2020
Interpretable Graph Capsule Networks for Object Recognition
Jindong Gu
Volker Tresp
FAtt
24
36
0
03 Dec 2020
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
40
25
0
29 Jun 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
Increasing the adversarial robustness and explainability of capsule networks with
γ
γ
γ
-capsules
David Peer
Sebastian Stabinger
A. Rodríguez-Sánchez
AAML
GAN
MedIm
39
11
0
23 Dec 2018
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
368
5,849
0
08 Jul 2016
1