ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02149
  4. Cited By
Analyzing the Cross-Sensor Portability of Neural Network Architectures
  for LiDAR-based Semantic Labeling

Analyzing the Cross-Sensor Portability of Neural Network Architectures for LiDAR-based Semantic Labeling

3 July 2019
Florian Piewak
Peter Pinggera
Johann Marius Zöllner
    3DPC
ArXivPDFHTML

Papers citing "Analyzing the Cross-Sensor Portability of Neural Network Architectures for LiDAR-based Semantic Labeling"

3 / 3 papers shown
Title
A Survey on Deep Domain Adaptation for LiDAR Perception
A Survey on Deep Domain Adaptation for LiDAR Perception
Larissa T. Triess
M. Dreissig
Christoph B. Rist
J. Marius Zöllner
42
66
0
04 Jun 2021
BirdNet: a 3D Object Detection Framework from LiDAR information
BirdNet: a 3D Object Detection Framework from LiDAR information
Jorge Beltrán
Carlos Guindel
Francisco Miguel Moreno
Daniel Cruzado
F. García
A. D. L. Escalera
3DPC
142
251
0
03 May 2018
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with
  Real-Time Application
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with Real-Time Application
Dominik Nuss
Stephan Reuter
Markus Thom
Ting Yuan
Gunther Krehl
M. Maile
Axel Gern
Klaus C. J. Dietmayer
61
148
0
09 May 2016
1