ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.01632
  4. Cited By
Generative Models for Automatic Chemical Design

Generative Models for Automatic Chemical Design

2 July 2019
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
    MedIm
    AI4CE
ArXivPDFHTML

Papers citing "Generative Models for Automatic Chemical Design"

50 / 93 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
223
30,089
0
01 Mar 2022
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
62
61
0
27 Jan 2021
A Model to Search for Synthesizable Molecules
A Model to Search for Synthesizable Molecules
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
54
109
0
12 Jun 2019
Labeled Graph Generative Adversarial Networks
Labeled Graph Generative Adversarial Networks
Shuangfei Fan
Bert Huang
GAN
45
30
0
07 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
104
208
0
02 Jun 2019
All SMILES Variational Autoencoder
All SMILES Variational Autoencoder
Zaccary Alperstein
Artem Cherkasov
J. Rolfe
DRL
44
38
0
30 May 2019
Leveraging binding-site structure for drug discovery with point-cloud
  methods
Leveraging binding-site structure for drug discovery with point-cloud methods
Vincent Mallet
Carlos Oliver
N. Moitessier
J. Waldispühl
28
7
0
28 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
94
7
0
24 May 2019
Decoding Molecular Graph Embeddings with Reinforcement Learning
Decoding Molecular Graph Embeddings with Reinforcement Learning
S. Kearnes
Li Li
Patrick F. Riley
OffRL
GNN
26
27
0
18 Apr 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
96
1,314
0
02 Apr 2019
Molecular geometry prediction using a deep generative graph neural
  network
Molecular geometry prediction using a deep generative graph neural network
Elman Mansimov
Omar Mahmood
Seokho Kang
Kyunghyun Cho
88
186
0
31 Mar 2019
Atomistic structure learning
Atomistic structure learning
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
AI4CE
33
36
0
27 Feb 2019
Mol-CycleGAN - a generative model for molecular optimization
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
51
249
0
06 Feb 2019
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
38
404
0
04 Dec 2018
Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems
  with Deep Learning
Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems with Deep Learning
Frank Noé
Simon Olsson
Jonas Köhler
Hao Wu
44
29
0
04 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
247
648
0
29 Nov 2018
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph
  Generation
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation
Rim Assouel
Mohamed Ahmed
Marwin H. S. Segler
Amir Saffari
Yoshua Bengio
64
55
0
24 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
103
706
0
22 Nov 2018
Generating equilibrium molecules with deep neural networks
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
51
38
0
26 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
76
539
0
19 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
210
7,623
0
01 Oct 2018
Molecular Hypergraph Grammar with its Application to Molecular
  Optimization
Molecular Hypergraph Grammar with its Application to Molecular Optimization
Hiroshi Kajino
43
103
0
08 Sep 2018
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
116
209
0
07 Sep 2018
N-Gram Graph: Simple Unsupervised Representation for Graphs, with
  Applications to Molecules
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Shengchao Liu
M. F. Demirel
Yingyu Liang
GNN
NAI
44
195
0
24 Jun 2018
Molecular generative model based on conditional variational autoencoder
  for de novo molecular design
Molecular generative model based on conditional variational autoencoder for de novo molecular design
Jaechang Lim
Seongok Ryu
Jin Woo Kim
W. Kim
BDL
DRL
51
333
0
15 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
145
925
0
30 May 2018
Deeply learning molecular structure-property relationships using
  attention- and gate-augmented graph convolutional network
Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network
Seongok Ryu
Jaechang Lim
S. Hong
W. Kim
GNN
31
67
0
28 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
65
456
0
23 May 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
221
183
0
30 Apr 2018
Attentional Multilabel Learning over Graphs: A Message Passing Approach
Attentional Multilabel Learning over Graphs: A Message Passing Approach
Kien Do
T. Tran
Thin Nguyen
Svetha Venkatesh
41
17
0
01 Apr 2018
Graphite: Iterative Generative Modeling of Graphs
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
95
300
0
28 Mar 2018
Fréchet ChemNet Distance: A metric for generative models for molecules
  in drug discovery
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
Günter Klambauer
MedIm
90
337
0
26 Mar 2018
Learning Deep Generative Models of Graphs
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
162
661
0
08 Mar 2018
NetGAN: Generating Graphs via Random Walks
NetGAN: Generating Graphs via Random Walks
Aleksandar Bojchevski
Oleksandr Shchur
Daniel Zügner
Stephan Günnemann
GAN
GNN
140
360
0
02 Mar 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
92
327
0
24 Feb 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
108
844
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
58
217
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
319
1,367
0
12 Feb 2018
On the Latent Space of Wasserstein Auto-Encoders
On the Latent Space of Wasserstein Auto-Encoders
Paul Kishan Rubenstein
Bernhard Schölkopf
Ilya O. Tolstikhin
DRL
33
53
0
11 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
103
848
0
09 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative
  Model
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
68
338
0
18 Jan 2018
PHOENICS: A universal deep Bayesian optimizer
PHOENICS: A universal deep Bayesian optimizer
Florian Hase
L. Roch
C. Kreisbeck
Alán Aspuru-Guzik
33
16
0
04 Jan 2018
In silico generation of novel, drug-like chemical matter using the LSTM
  neural network
In silico generation of novel, drug-like chemical matter using the LSTM neural network
P. Ertl
Richard A. Lewis
E. Martin
V. Polyakov
48
59
0
20 Dec 2017
Generating and designing DNA with deep generative models
Generating and designing DNA with deep generative models
N. Killoran
Leo J. Lee
Andrew Delong
David Duvenaud
B. Frey
AI4CE
49
146
0
17 Dec 2017
Variational auto-encoding of protein sequences
Variational auto-encoding of protein sequences
Sam Sinai
Eric D. Kelsic
G. Church
M. Nowak
BDL
DRL
48
67
0
09 Dec 2017
Deep Reinforcement Learning for De-Novo Drug Design
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
81
1,028
0
29 Nov 2017
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
58
1,010
0
28 Nov 2017
Application of generative autoencoder in de novo molecular design
Application of generative autoencoder in de novo molecular design
T. Blaschke
Marcus Olivecrona
Ola Engkvist
J. Bajorath
Hongming Chen
AI4CE
96
344
0
21 Nov 2017
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Jesse Engel
Matthew Hoffman
Adam Roberts
DRL
60
140
0
15 Nov 2017
Wasserstein Auto-Encoders
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
113
1,055
0
05 Nov 2017
12
Next