ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.00787
  4. Cited By
CNN-based synthesis of realistic high-resolution LiDAR data

CNN-based synthesis of realistic high-resolution LiDAR data

28 June 2019
Larissa T. Triess
David Peter
Christoph B. Rist
Markus Enzweiler
Johann Marius Zöllner
    3DPC
ArXivPDFHTML

Papers citing "CNN-based synthesis of realistic high-resolution LiDAR data"

6 / 6 papers shown
Title
TULIP: Transformer for Upsampling of LiDAR Point Clouds
TULIP: Transformer for Upsampling of LiDAR Point Clouds
Bin Yang
Patrick Pfreundschuh
Roland Siegwart
Marco Hutter
Peyman Moghadam
Vaishakh Patil
3DPC
26
6
0
11 Dec 2023
A Realism Metric for Generated LiDAR Point Clouds
A Realism Metric for Generated LiDAR Point Clouds
Larissa T. Triess
Christoph B. Rist
David Peter
J. Marius Zöllner
3DPC
32
8
0
31 Aug 2022
HALS: A Height-Aware Lidar Super-Resolution Framework for Autonomous
  Driving
HALS: A Height-Aware Lidar Super-Resolution Framework for Autonomous Driving
George Eskandar
Sanjeev Sudarsan
Karim Guirguis
Janaranjani Palaniswamy
Bharath Somashekar
Bin Yang
13
6
0
08 Feb 2022
Quantifying point cloud realism through adversarially learned latent
  representations
Quantifying point cloud realism through adversarially learned latent representations
Larissa T. Triess
David Peter
Stefan A. Baur
J. Marius Zöllner
3DPC
32
2
0
24 Sep 2021
A Survey on Deep Domain Adaptation for LiDAR Perception
A Survey on Deep Domain Adaptation for LiDAR Perception
Larissa T. Triess
M. Dreissig
Christoph B. Rist
J. Marius Zöllner
45
66
0
04 Jun 2021
Semantic Scene Completion using Local Deep Implicit Functions on LiDAR
  Data
Semantic Scene Completion using Local Deep Implicit Functions on LiDAR Data
Christoph B. Rist
David Emmerichs
Markus Enzweiler
D. Gavrila
3DPC
3DV
20
84
0
18 Nov 2020
1