ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11235
  4. Cited By
Invariance-inducing regularization using worst-case transformations
  suffices to boost accuracy and spatial robustness

Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness

26 June 2019
Fanny Yang
Zuowen Wang
C. Heinze-Deml
ArXivPDFHTML

Papers citing "Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness"

8 / 8 papers shown
Title
Strong inductive biases provably prevent harmless interpolation
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
35
9
0
18 Jan 2023
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Improving the Sample-Complexity of Deep Classification Networks with
  Invariant Integration
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
M. Rath
A. P. Condurache
25
8
0
08 Feb 2022
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
531
0
01 Jul 2020
Toward Adversarial Robustness via Semi-supervised Robust Training
Toward Adversarial Robustness via Semi-supervised Robust Training
Yiming Li
Baoyuan Wu
Yan Feng
Yanbo Fan
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
87
13
0
16 Mar 2020
Understanding and Mitigating the Tradeoff Between Robustness and
  Accuracy
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
48
222
0
25 Feb 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1