Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.10033
Cited By
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
24 June 2019
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions"
16 / 16 papers shown
Title
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Jia Zhang
Mark B. Gerstein
112
2
0
26 Feb 2025
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
78
1,005
0
26 Feb 2019
A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules
Lixue Cheng
Matthew Welborn
Anders S. Christensen
Thomas F. Miller
46
93
0
10 Jan 2019
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
235
5,363
0
28 Sep 2018
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
63
31
0
27 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
272
895
0
07 Jun 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
78
959
0
22 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
172
1,828
0
30 Nov 2017
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
127
1,069
0
26 Jun 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
276
2,254
0
24 Jun 2017
Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra
M. Gastegger
J. Behler
P. Marquetand
AI4CE
31
334
0
16 May 2017
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
65
338
0
16 May 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
350
7,388
0
04 Apr 2017
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
58
606
0
09 Sep 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
135
1,581
0
12 Sep 2011
1