Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.09624
Cited By
On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference
23 June 2019
Rohin Shah
Noah Gundotra
Pieter Abbeel
Anca Dragan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference"
16 / 16 papers shown
Title
ARMCHAIR: integrated inverse reinforcement learning and model predictive control for human-robot collaboration
Angelo Caregnato-Neto
Luciano Cavalcante Siebert
Arkady Zgonnikov
Marcos Ricardo Omena de Albuquerque Máximo
R. J. Afonso
37
2
0
29 Feb 2024
Inverse Decision Modeling: Learning Interpretable Representations of Behavior
Daniel Jarrett
Alihan Huyuk
M. Schaar
AI4CE
22
27
0
28 Oct 2023
Towards Understanding Sycophancy in Language Models
Mrinank Sharma
Meg Tong
Tomasz Korbak
David Duvenaud
Amanda Askell
...
Oliver Rausch
Nicholas Schiefer
Da Yan
Miranda Zhang
Ethan Perez
227
197
0
20 Oct 2023
Discovering User Types: Mapping User Traits by Task-Specific Behaviors in Reinforcement Learning
L. L. Ankile
B. S. Ham
K. Mao
E. Shin
S. Swaroop
F. Doshi-Velez
W. Pan
OffRL
24
1
0
16 Jul 2023
Learning Zero-Shot Cooperation with Humans, Assuming Humans Are Biased
Chao Yu
Jiaxuan Gao
Weiling Liu
Bo Xu
Hao Tang
Jiaqi Yang
Yu Wang
Yi Wu
31
39
0
03 Feb 2023
On the Sensitivity of Reward Inference to Misspecified Human Models
Joey Hong
Kush S. Bhatia
Anca Dragan
27
24
0
09 Dec 2022
Misspecification in Inverse Reinforcement Learning
Joar Skalse
Alessandro Abate
33
22
0
06 Dec 2022
Modeling Mobile Health Users as Reinforcement Learning Agents
Eura Shin
S. Swaroop
Weiwei Pan
S. Murphy
Finale Doshi-Velez
OffRL
15
3
0
01 Dec 2022
Law Informs Code: A Legal Informatics Approach to Aligning Artificial Intelligence with Humans
John J. Nay
ELM
AILaw
88
27
0
14 Sep 2022
Humans are not Boltzmann Distributions: Challenges and Opportunities for Modelling Human Feedback and Interaction in Reinforcement Learning
David Lindner
Mennatallah El-Assady
OffRL
37
16
0
27 Jun 2022
How to talk so AI will learn: Instructions, descriptions, and autonomy
T. Sumers
Robert D. Hawkins
Mark K. Ho
Thomas Griffiths
Dylan Hadfield-Menell
LM&Ro
38
20
0
16 Jun 2022
Human irrationality: both bad and good for reward inference
Lawrence Chan
Andrew Critch
Anca Dragan
20
26
0
12 Nov 2021
Uncertain Decisions Facilitate Better Preference Learning
Cassidy Laidlaw
Stuart J. Russell
30
11
0
19 Jun 2021
Deep Interpretable Models of Theory of Mind
Ini Oguntola
Dana Hughes
Katia Sycara
HAI
33
26
0
07 Apr 2021
Conservative AI and social inequality: Conceptualizing alternatives to bias through social theory
Mike Zajko
21
37
0
16 Jul 2020
Online Bayesian Goal Inference for Boundedly-Rational Planning Agents
Zhi-Xuan Tan
Jordyn L. Mann
Tom Silver
J. Tenenbaum
Vikash K. Mansinghka
OffRL
23
89
0
13 Jun 2020
1