ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09531
  4. Cited By
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting

Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting

23 June 2019
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
ArXivPDFHTML

Papers citing "Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting"

40 / 40 papers shown
Title
Binary Losses for Density Ratio Estimation
Binary Losses for Density Ratio Estimation
Werner Zellinger
81
0
0
28 Jan 2025
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
41
57
0
10 Jan 2020
What is the Effect of Importance Weighting in Deep Learning?
What is the Effect of Importance Weighting in Deep Learning?
Jonathon Byrd
Zachary Chase Lipton
63
458
0
08 Dec 2018
Metropolis-Hastings Generative Adversarial Networks
Metropolis-Hastings Generative Adversarial Networks
Ryan D. Turner
Jane Hung
Eric Frank
Yunus Saatci
J. Yosinski
GAN
28
98
0
28 Nov 2018
Bias and Generalization in Deep Generative Models: An Empirical Study
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao
Hongyu Ren
Arianna Yuan
Jiaming Song
Noah D. Goodman
Stefano Ermon
AI4CE
35
137
0
08 Nov 2018
Do Deep Generative Models Know What They Don't Know?
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
39
753
0
22 Oct 2018
Discriminator Rejection Sampling
Discriminator Rejection Sampling
S. Azadi
Catherine Olsson
Trevor Darrell
Ian Goodfellow
Augustus Odena
41
131
0
16 Oct 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
38
82
0
02 Oct 2018
Importance Weighted Generative Networks
Importance Weighted Generative Networks
M. Diesendruck
Ethan R. Elenberg
Rajat Sen
G. W. Cole
Sanjay Shakkottai
Sinead Williamson
GAN
30
16
0
07 Jun 2018
Variational Rejection Sampling
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
99
32
0
05 Apr 2018
Quantitatively Evaluating GANs With Divergences Proposed for Training
Quantitatively Evaluating GANs With Divergences Proposed for Training
Daniel Jiwoong Im
He Ma
Graham W. Taylor
K. Branson
EGVM
39
69
0
02 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
124
4,421
0
16 Feb 2018
More Robust Doubly Robust Off-policy Evaluation
More Robust Doubly Robust Off-policy Evaluation
Mehrdad Farajtabar
Yinlam Chow
Mohammad Ghavamzadeh
OffRL
43
266
0
10 Feb 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
67
1,470
0
04 Jan 2018
Data Augmentation Generative Adversarial Networks
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedIm
GAN
105
1,069
0
12 Nov 2017
Learning to Compose Domain-Specific Transformations for Data
  Augmentation
Learning to Compose Domain-Specific Transformations for Data Augmentation
Alexander J. Ratner
Henry R. Ehrenberg
Zeshan Hussain
Jared A. Dunnmon
Christopher Ré
54
349
0
06 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
187
18,685
0
20 Jul 2017
Variational Approaches for Auto-Encoding Generative Adversarial Networks
Variational Approaches for Auto-Encoding Generative Adversarial Networks
Mihaela Rosca
Balaji Lakshminarayanan
David Warde-Farley
S. Mohamed
DRL
GAN
43
264
0
15 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
161
5,774
0
14 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
112
214
0
31 May 2017
Continuous State-Space Models for Optimal Sepsis Treatment - a Deep
  Reinforcement Learning Approach
Continuous State-Space Models for Optimal Sepsis Treatment - a Deep Reinforcement Learning Approach
Aniruddh Raghu
Matthieu Komorowski
Leo Anthony Celi
Peter Szolovits
Marzyeh Ghassemi
OffRL
28
193
0
23 May 2017
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Ivo Danihelka
Balaji Lakshminarayanan
Benigno Uria
Daan Wierstra
Peter Dayan
GAN
35
53
0
15 May 2017
Boosted Generative Models
Boosted Generative Models
Aditya Grover
Stefano Ermon
21
51
0
27 Feb 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
41
933
0
19 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
446
5,748
0
05 Dec 2016
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
95
397
0
20 Oct 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
97
415
0
11 Oct 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
257
7,286
0
13 Jun 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
328
8,999
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
64
1,648
0
02 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
281
18,300
0
27 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
63
314
0
07 May 2016
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
Philip S. Thomas
Emma Brunskill
OffRL
150
573
0
04 Apr 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
390
27,231
0
02 Dec 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
66
2,352
0
19 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
187
1,240
0
01 Sep 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
420
9,233
0
06 Jun 2015
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
69
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
321
16,972
0
20 Dec 2013
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
134
2,348
0
15 May 2008
1