Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.09525
Cited By
Defending Against Adversarial Examples with K-Nearest Neighbor
23 June 2019
Chawin Sitawarin
David Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Defending Against Adversarial Examples with K-Nearest Neighbor"
35 / 35 papers shown
Title
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Yue Liu
P. Varshney
D. Song
AAML
94
47
0
16 Mar 2020
Adversarial Training with Voronoi Constraints
Marc Khoury
Dylan Hadfield-Menell
AAML
36
24
0
02 May 2019
On the Robustness of Deep K-Nearest Neighbors
Chawin Sitawarin
David Wagner
AAML
OOD
48
58
0
20 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
Laurens van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
80
64
0
05 Mar 2019
Analyzing and Improving Representations with the Soft Nearest Neighbor Loss
Nicholas Frosst
Nicolas Papernot
Geoffrey E. Hinton
24
159
0
05 Feb 2019
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
47
319
0
13 Nov 2018
Limitations of the Lipschitz constant as a defense against adversarial examples
Todd P. Huster
C. Chiang
R. Chadha
AAML
26
84
0
25 Jul 2018
Manifold Mixup: Better Representations by Interpolating Hidden States
Vikas Verma
Alex Lamb
Christopher Beckham
Amir Najafi
Ioannis Mitliagkas
Aaron Courville
David Lopez-Paz
Yoshua Bengio
AAML
DRL
27
35
0
13 Jun 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
37
369
0
23 May 2018
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OOD
SSL
DRL
180
3,272
0
21 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
73
505
0
13 Mar 2018
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
32
74
0
22 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
64
301
0
12 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
153
3,171
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
78
734
0
08 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
58
1,335
0
12 Dec 2017
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
87
1,755
0
05 Dec 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
221
9,687
0
25 Oct 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
90
2,140
0
21 Aug 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
40
283
0
13 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
203
11,962
0
19 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
69
155
0
13 Jun 2017
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
149
3,682
0
28 Feb 2017
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
536
10,699
0
19 Feb 2017
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
78
1,735
0
24 May 2016
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
40
4,153
0
25 Apr 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
264
10,149
0
16 Mar 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
87
4,878
0
14 Nov 2015
DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving
Chenyi Chen
Ari Seff
A. Kornhauser
Jianxiong Xiao
70
1,757
0
01 May 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
148
18,922
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
120
3,261
0
05 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
758
99,991
0
04 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
150
14,831
1
21 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
336
16,972
0
20 Dec 2013
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
83
12,163
0
19 Dec 2013
1