ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06821
  4. Cited By
A Survey of Optimization Methods from a Machine Learning Perspective

A Survey of Optimization Methods from a Machine Learning Perspective

17 June 2019
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
ArXivPDFHTML

Papers citing "A Survey of Optimization Methods from a Machine Learning Perspective"

25 / 25 papers shown
Title
A Balanced Approach of Rapid Genetic Exploration and Surrogate Exploitation for Hyperparameter Optimization
A Balanced Approach of Rapid Genetic Exploration and Surrogate Exploitation for Hyperparameter Optimization
Chul Kim
Inwhee Joe
45
2
0
10 Apr 2025
Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers
Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers
Xinyu Tang
Xiaolei Wang
Wayne Xin Zhao
Siyuan Lu
Yaliang Li
Ji-Rong Wen
LRM
74
16
0
28 Jan 2025
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Zeyuan Ma
Hongshu Guo
Yue-Jiao Gong
Jun Zhang
Kay Chen Tan
208
4
0
01 Nov 2024
A Full Adagrad algorithm with O(Nd) operations
A Full Adagrad algorithm with O(Nd) operations
Antoine Godichon-Baggioni
Wei Lu
Bruno Portier
ODL
70
0
0
03 May 2024
Recent Advances in Recurrent Neural Networks
Recent Advances in Recurrent Neural Networks
Hojjat Salehinejad
Sharan Sankar
Joseph Barfett
E. Colak
S. Valaee
AI4TS
79
578
0
29 Dec 2017
Non-convex Optimization for Machine Learning
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
100
480
0
21 Dec 2017
Improving Generalization Performance by Switching from Adam to SGD
Improving Generalization Performance by Switching from Adam to SGD
N. Keskar
R. Socher
ODL
64
522
0
20 Dec 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
134
1,517
0
25 Jan 2017
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
Sub-sampled Newton Methods with Non-uniform Sampling
Sub-sampled Newton Methods with Non-uniform Sampling
Peng Xu
Jiyan Yang
Farbod Roosta-Khorasani
Christopher Ré
Michael W. Mahoney
45
115
0
02 Jul 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
77
2,000
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
280
7,286
0
13 Jun 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
382
2,563
0
25 Jan 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
171
13,174
0
09 Sep 2015
DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GAN
DRL
142
1,959
0
16 Feb 2015
Memory Networks
Memory Networks
Jason Weston
S. Chopra
Antoine Bordes
GNN
KELM
117
1,702
0
15 Oct 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
95
1,817
0
01 Jul 2014
A Stochastic Quasi-Newton Method for Large-Scale Optimization
A Stochastic Quasi-Newton Method for Large-Scale Optimization
R. Byrd
Samantha Hansen
J. Nocedal
Y. Singer
ODL
68
470
0
27 Jan 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
77
1,226
0
26 Sep 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
241
1,245
0
10 Sep 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
101
6,619
0
22 Dec 2012
Low-rank Matrix Completion using Alternating Minimization
Low-rank Matrix Completion using Alternating Minimization
Prateek Jain
Praneeth Netrapalli
Sujay Sanghavi
134
1,066
0
03 Dec 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
182
2,605
0
29 Jun 2012
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
51
305
0
27 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
128
4,275
0
18 Nov 2011
1