ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06017
  4. Cited By
Fast Calculation of Probabilistic Power Flow: A Model-based Deep
  Learning Approach

Fast Calculation of Probabilistic Power Flow: A Model-based Deep Learning Approach

14 June 2019
Yan Yang
Zhifang Yang
Juan Yu
Baosen Zhang
ArXivPDFHTML

Papers citing "Fast Calculation of Probabilistic Power Flow: A Model-based Deep Learning Approach"

5 / 5 papers shown
Title
Provable approximation properties for deep neural networks
Provable approximation properties for deep neural networks
Uri Shaham
A. Cloninger
Ronald R. Coifman
105
230
0
24 Sep 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
219
18,534
0
06 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.1K
99,991
0
04 Sep 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE
3DPC
3DV
173
4,041
0
09 Jun 2014
Early stopping and non-parametric regression: An optimal data-dependent
  stopping rule
Early stopping and non-parametric regression: An optimal data-dependent stopping rule
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
67
299
0
15 Jun 2013
1