Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05890
Cited By
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
13 June 2019
Kaifeng Lyu
Jian Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Maximizes the Margin of Homogeneous Neural Networks"
46 / 246 papers shown
Title
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
64
19
0
04 Jan 2021
Explicit regularization and implicit bias in deep network classifiers trained with the square loss
T. Poggio
Q. Liao
11
41
0
31 Dec 2020
Towards Resolving the Implicit Bias of Gradient Descent for Matrix Factorization: Greedy Low-Rank Learning
Zhiyuan Li
Yuping Luo
Kaifeng Lyu
20
120
0
17 Dec 2020
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
27
33
0
11 Dec 2020
Implicit Regularization in ReLU Networks with the Square Loss
Gal Vardi
Ohad Shamir
11
48
0
09 Dec 2020
Implicit bias of deep linear networks in the large learning rate phase
Wei Huang
Weitao Du
R. Xu
Chunrui Liu
24
2
0
25 Nov 2020
Implicit bias of any algorithm: bounding bias via margin
Elvis Dohmatob
9
0
0
12 Nov 2020
Inductive Bias of Gradient Descent for Weight Normalized Smooth Homogeneous Neural Nets
Depen Morwani
H. G. Ramaswamy
9
3
0
24 Oct 2020
Train simultaneously, generalize better: Stability of gradient-based minimax learners
Farzan Farnia
Asuman Ozdaglar
31
47
0
23 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
26
62
0
21 Oct 2020
Effects of Parameter Norm Growth During Transformer Training: Inductive Bias from Gradient Descent
William Merrill
Vivek Ramanujan
Yoav Goldberg
Roy Schwartz
Noah A. Smith
AI4CE
11
36
0
19 Oct 2020
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
14
501
0
15 Oct 2020
A Unifying View on Implicit Bias in Training Linear Neural Networks
Chulhee Yun
Shankar Krishnan
H. Mobahi
MLT
13
80
0
06 Oct 2020
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
8
23
0
04 Oct 2020
Understanding Implicit Regularization in Over-Parameterized Single Index Model
Jianqing Fan
Zhuoran Yang
Mengxin Yu
24
16
0
16 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Tianyang Hu
Wenjia Wang
Cong Lin
Guang Cheng
14
51
0
06 Jul 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
23
62
0
25 Jun 2020
Implicitly Maximizing Margins with the Hinge Loss
Justin Lizama
13
1
0
25 Jun 2020
Gradient descent follows the regularization path for general losses
Ziwei Ji
Miroslav Dudík
Robert Schapire
Matus Telgarsky
AI4CE
FaML
6
60
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
15
33
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Generalization by Recognizing Confusion
Daniel Chiu
Franklyn Wang
S. Kominers
NoLa
11
0
0
13 Jun 2020
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
12
162
0
11 Jun 2020
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
15
44
0
05 Jun 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
19
4
0
26 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
A function space analysis of finite neural networks with insights from sampling theory
Raja Giryes
19
6
0
15 Apr 2020
Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent
Suriya Gunasekar
Blake E. Woodworth
Nathan Srebro
MDE
19
28
0
02 Apr 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
16
4
0
22 Feb 2020
On the Decision Boundaries of Neural Networks: A Tropical Geometry Perspective
Motasem Alfarra
Adel Bibi
Hasan Hammoud
M. Gaafar
Guohao Li
11
26
0
20 Feb 2020
Unique Properties of Flat Minima in Deep Networks
Rotem Mulayoff
T. Michaeli
ODL
19
4
0
11 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
21
327
0
11 Feb 2020
A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks
Zixiang Chen
Yuan Cao
Quanquan Gu
Tong Zhang
MLT
27
10
0
10 Feb 2020
Reward Tweaking: Maximizing the Total Reward While Planning for Short Horizons
Chen Tessler
Shie Mannor
14
2
0
09 Feb 2020
Sharp Rate of Convergence for Deep Neural Network Classifiers under the Teacher-Student Setting
Tianyang Hu
Zuofeng Shang
Guang Cheng
27
19
0
19 Jan 2020
Double descent in the condition number
T. Poggio
Gil Kur
Andy Banburski
19
27
0
12 Dec 2019
How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?
Zixiang Chen
Yuan Cao
Difan Zou
Quanquan Gu
14
122
0
27 Nov 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case
Greg Ongie
Rebecca Willett
Daniel Soudry
Nathan Srebro
13
160
0
03 Oct 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
29
161
0
25 Aug 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
30
98
0
16 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
21
352
0
13 Jun 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
27
3
0
12 Mar 2019
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with
ℓ
1
\ell^1
ℓ
1
and
ℓ
0
\ell^0
ℓ
0
Controls
Jason M. Klusowski
Andrew R. Barron
130
142
0
26 Jul 2016
Previous
1
2
3
4
5