Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05890
Cited By
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
13 June 2019
Kaifeng Lyu
Jian Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Maximizes the Margin of Homogeneous Neural Networks"
50 / 246 papers shown
Title
Stochastic linear optimization never overfits with quadratically-bounded losses on general data
Matus Telgarsky
11
11
0
14 Feb 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
19
83
0
14 Feb 2022
The Sample Complexity of One-Hidden-Layer Neural Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
22
10
0
13 Feb 2022
Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression
Jing Xu
Jiaye Teng
Yang Yuan
Andrew Chi-Chih Yao
23
1
0
12 Feb 2022
Gradient Methods Provably Converge to Non-Robust Networks
Gal Vardi
Gilad Yehudai
Ohad Shamir
30
27
0
09 Feb 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks
Samuel Lippl
L. F. Abbott
SueYeon Chung
MLT
AI4CE
14
2
0
05 Feb 2022
Implicit Regularization Towards Rank Minimization in ReLU Networks
Nadav Timor
Gal Vardi
Ohad Shamir
34
49
0
30 Jan 2022
Training invariances and the low-rank phenomenon: beyond linear networks
Thien Le
Stefanie Jegelka
20
29
0
28 Jan 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
Global Convergence Analysis of Deep Linear Networks with A One-neuron Layer
Kun Chen
Dachao Lin
Zhihua Zhang
14
1
0
08 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
Is Importance Weighting Incompatible with Interpolating Classifiers?
Ke Alexander Wang
Niladri S. Chatterji
Saminul Haque
Tatsunori Hashimoto
24
20
0
24 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wenjia Wang
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
22
18
0
11 Nov 2021
Scaffolding Sets
M. Burhanpurkar
Zhun Deng
Cynthia Dwork
Linjun Zhang
35
9
0
04 Nov 2021
Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias
Kaifeng Lyu
Zhiyuan Li
Runzhe Wang
Sanjeev Arora
MLT
34
69
0
26 Oct 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya-Qin Zhang
22
16
0
23 Oct 2021
Actor-critic is implicitly biased towards high entropy optimal policies
Yuzheng Hu
Ziwei Ji
Matus Telgarsky
57
11
0
21 Oct 2021
What Happens after SGD Reaches Zero Loss? --A Mathematical Framework
Zhiyuan Li
Tianhao Wang
Sanjeev Arora
MLT
90
98
0
13 Oct 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
55
11
0
13 Oct 2021
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
40
14
0
12 Oct 2021
Does Momentum Change the Implicit Regularization on Separable Data?
Bohan Wang
Qi Meng
Huishuai Zhang
Ruoyu Sun
Wei Chen
Zhirui Ma
Tie-Yan Liu
47
15
0
08 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
99
4
0
07 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
135
83
0
06 Oct 2021
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
Logit Attenuating Weight Normalization
Aman Gupta
R. Ramanath
Jun Shi
Anika Ramachandran
Sirou Zhou
Mingzhou Zhou
S. Keerthi
37
1
0
12 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
Distribution of Classification Margins: Are All Data Equal?
Andrzej Banburski
Fernanda De La Torre
Nishka Pant
Ishana Shastri
T. Poggio
28
4
0
21 Jul 2021
Continuous vs. Discrete Optimization of Deep Neural Networks
Omer Elkabetz
Nadav Cohen
68
44
0
14 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
34
17
0
04 Jul 2021
Fast Margin Maximization via Dual Acceleration
Ziwei Ji
Nathan Srebro
Matus Telgarsky
15
35
0
01 Jul 2021
Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity
Arthur Jacot
François Ged
Berfin cSimcsek
Clément Hongler
Franck Gabriel
29
52
0
30 Jun 2021
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity
Scott Pesme
Loucas Pillaud-Vivien
Nicolas Flammarion
27
99
0
17 Jun 2021
Understanding Deflation Process in Over-parametrized Tensor Decomposition
Rong Ge
Y. Ren
Xiang Wang
Mo Zhou
8
17
0
11 Jun 2021
Early-stopped neural networks are consistent
Ziwei Ji
Justin D. Li
Matus Telgarsky
14
36
0
10 Jun 2021
Improved OOD Generalization via Adversarial Training and Pre-training
Mingyang Yi
Lu Hou
Jiacheng Sun
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
VLM
28
83
0
24 May 2021
Properties of the After Kernel
Philip M. Long
24
29
0
21 May 2021
Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks
Hancheng Min
Salma Tarmoun
René Vidal
Enrique Mallada
MLT
11
4
0
13 May 2021
Directional Convergence Analysis under Spherically Symmetric Distribution
Dachao Lin
Zhihua Zhang
MLT
12
0
0
09 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
Yuan Cao
Quanquan Gu
M. Belkin
11
51
0
28 Apr 2021
Achieving Small Test Error in Mildly Overparameterized Neural Networks
Shiyu Liang
Ruoyu Sun
R. Srikant
20
3
0
24 Apr 2021
Understanding the role of importance weighting for deep learning
Da Xu
Yuting Ye
Chuanwei Ruan
FAtt
36
43
0
28 Mar 2021
How to decay your learning rate
Aitor Lewkowycz
41
24
0
23 Mar 2021
Inductive Bias of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm
Meena Jagadeesan
Ilya P. Razenshteyn
Suriya Gunasekar
11
21
0
24 Feb 2021
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent
Shahar Azulay
E. Moroshko
Mor Shpigel Nacson
Blake E. Woodworth
Nathan Srebro
Amir Globerson
Daniel Soudry
AI4CE
33
73
0
19 Feb 2021
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Fartash Faghri
Sven Gowal
C. N. Vasconcelos
David J. Fleet
Fabian Pedregosa
Nicolas Le Roux
AAML
192
7
0
17 Feb 2021
Noisy Recurrent Neural Networks
S. H. Lim
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
14
52
0
09 Feb 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
55
20
0
07 Jan 2021
Previous
1
2
3
4
5
Next