ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04567
  4. Cited By
CVPR19 Tracking and Detection Challenge: How crowded can it get?

CVPR19 Tracking and Detection Challenge: How crowded can it get?

10 June 2019
Patrick Dendorfer
S. Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixe
    VOT
ArXivPDFHTML

Papers citing "CVPR19 Tracking and Detection Challenge: How crowded can it get?"

4 / 4 papers shown
Title
MOT16: A Benchmark for Multi-Object Tracking
MOT16: A Benchmark for Multi-Object Tracking
Anton Milan
Laura Leal-Taixe
Ian Reid
Stefan Roth
Konrad Schindler
VOT
144
1,801
0
02 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
499
62,270
0
04 Jun 2015
MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking
MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking
Laura Leal-Taixé
Anton Milan
Ian Reid
Stefan Roth
Konrad Schindler
VOT
71
815
0
08 Apr 2015
1