ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04547
  4. Cited By
Learning robust visual representations using data augmentation
  invariance

Learning robust visual representations using data augmentation invariance

11 June 2019
Alex Hernández-García
Peter König
Tim C Kietzmann
    OOD
ArXivPDFHTML

Papers citing "Learning robust visual representations using data augmentation invariance"

17 / 17 papers shown
Title
High Frequency Component Helps Explain the Generalization of
  Convolutional Neural Networks
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
Haohan Wang
Xindi Wu
Pengcheng Yin
Eric Xing
59
522
0
28 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
89
797
0
25 Apr 2019
Augment your batch: better training with larger batches
Augment your batch: better training with larger batches
Elad Hoffer
Tal Ben-Nun
Itay Hubara
Niv Giladi
Torsten Hoefler
Daniel Soudry
ODL
95
74
0
27 Jan 2019
Data augmentation instead of explicit regularization
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
54
144
0
11 Jun 2018
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
68
250
0
30 Nov 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
88
476
0
05 Jun 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,407
0
02 Mar 2017
Temporal Ensembling for Semi-Supervised Learning
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
181
2,554
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
733
36,781
0
25 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
328
7,980
0
23 May 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
144
1,934
0
24 Feb 2016
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
183
1,582
0
09 Mar 2015
Towards Biologically Plausible Deep Learning
Towards Biologically Plausible Deep Learning
Yoshua Bengio
Dong-Hyun Lee
J. Bornschein
Thomas Mesnard
Zhouhan Lin
DRL
OOD
62
351
0
14 Feb 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
242
4,667
0
21 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.6K
39,509
0
01 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
255
14,912
1
21 Dec 2013
1