ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03787
  4. Cited By
Intriguing properties of adversarial training at scale

Intriguing properties of adversarial training at scale

10 June 2019
Cihang Xie
Alan Yuille
    AAML
ArXivPDFHTML

Papers citing "Intriguing properties of adversarial training at scale"

21 / 21 papers shown
Title
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
Removing Batch Normalization Boosts Adversarial Training
Removing Batch Normalization Boosts Adversarial Training
Haotao Wang
Aston Zhang
Shuai Zheng
Xingjian Shi
Mu Li
Zhangyang Wang
37
41
0
04 Jul 2022
Robust SAR ATR on MSTAR with Deep Learning Models trained on Full
  Synthetic MOCEM data
Robust SAR ATR on MSTAR with Deep Learning Models trained on Full Synthetic MOCEM data
Benjamin Camus
C. Barbu
Eric Monteux
19
4
0
15 Jun 2022
On Fragile Features and Batch Normalization in Adversarial Training
On Fragile Features and Batch Normalization in Adversarial Training
Nils Philipp Walter
David Stutz
Bernt Schiele
AAML
24
5
0
26 Apr 2022
Overparametrization improves robustness against adversarial attacks: A
  replication study
Overparametrization improves robustness against adversarial attacks: A replication study
Ali Borji
AAML
17
1
0
20 Feb 2022
Pure Noise to the Rescue of Insufficient Data: Improving Imbalanced
  Classification by Training on Random Noise Images
Pure Noise to the Rescue of Insufficient Data: Improving Imbalanced Classification by Training on Random Noise Images
Shiran Zada
Itay Benou
Michal Irani
32
25
0
16 Dec 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated
  Channel Maps
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
40
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust
  Training
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
27
106
0
26 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Learnable Boundary Guided Adversarial Training
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu-Lin Liu
Liwei Wang
Jiaya Jia
OOD
AAML
24
124
0
23 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
226
0
26 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Defending Against Multiple and Unforeseen Adversarial Videos
Defending Against Multiple and Unforeseen Adversarial Videos
Shao-Yuan Lo
Vishal M. Patel
AAML
25
23
0
11 Sep 2020
On Adversarial Robustness: A Neural Architecture Search perspective
On Adversarial Robustness: A Neural Architecture Search perspective
Chaitanya Devaguptapu
Devansh Agarwal
Gaurav Mittal
Pulkit Gopalani
V. Balasubramanian
OOD
AAML
12
33
0
16 Jul 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
42
458
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
98
1,666
0
29 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges
  and How to Overcome Them
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Instance adaptive adversarial training: Improved accuracy tradeoffs in
  neural nets
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
131
103
0
17 Oct 2019
1