ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03631
  4. Cited By
Overcoming Limitations of Mixture Density Networks: A Sampling and
  Fitting Framework for Multimodal Future Prediction

Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction

9 June 2019
Osama Makansi
Eddy Ilg
Özgün Çiçek
Thomas Brox
ArXivPDFHTML

Papers citing "Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction"

50 / 111 papers shown
Title
Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-Shot Energy-Based Multimodal Motion Prediction
Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-Shot Energy-Based Multimodal Motion Prediction
Ze Zhang
Georg Hess
Junjie Hu
Emmanuel Dean
Lennart Svensson
Knut Åkesson
48
0
0
01 May 2025
Hyperparameter Optimisation with Practical Interpretability and Explanation Methods in Probabilistic Curriculum Learning
Hyperparameter Optimisation with Practical Interpretability and Explanation Methods in Probabilistic Curriculum Learning
Llewyn Salt
Marcus Gallagher
30
0
0
09 Apr 2025
Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
Llewyn Salt
Marcus Gallagher
33
1
0
02 Apr 2025
Agent-Based Modeling and Deep Neural Networks for Establishing Digital Twins of Secure Facilities under Sensing Restrictions
Agent-Based Modeling and Deep Neural Networks for Establishing Digital Twins of Secure Facilities under Sensing Restrictions
Chathika Gunaratne
Mason Stott
Debraj De
Gautam Malviya Thakur
Chris Young
34
0
0
29 Mar 2025
Broaden your SCOPE! Efficient Multi-turn Conversation Planning for LLMs using Semantic Space
Zhiliang Chen
Xinyuan Niu
Chuan-Sheng Foo
Bryan Kian Hsiang Low
53
1
0
14 Mar 2025
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace Distribution
Yingda Yin
Jiangran Lyu
Yang Wang
Heru Wang
H. Wang
B. Chen
OOD
97
4
0
24 Feb 2025
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
David Perera
Victor Letzelter
Théo Mariotte
Adrien Cortés
Mickaël Chen
S. Essid
Ga¨el Richard
74
2
0
20 Jan 2025
Hierarchical Light Transformer Ensembles for Multimodal Trajectory Forecasting
Hierarchical Light Transformer Ensembles for Multimodal Trajectory Forecasting
Adrien Lafage
Mathieu Barbier
Gianni Franchi
David Filliat
39
3
0
08 Jan 2025
Beyond Normal: Learning Spatial Density Models of Node Mobility
Wanxin Gao
Ioanis Nikolaidis
Janelle Harms
18
0
0
17 Nov 2024
3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction
3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction
Jongmin Lee
Minsu Cho
46
1
0
01 Nov 2024
A Probabilistic Model for Skill Acquisition with Switching Latent
  Feedback Controllers
A Probabilistic Model for Skill Acquisition with Switching Latent Feedback Controllers
Juyan Zhang
Dana Kulić
Michael Burke
31
0
0
18 Oct 2024
Annealed Winner-Takes-All for Motion Forecasting
Annealed Winner-Takes-All for Motion Forecasting
Yihong Xu
Victor Letzelter
Mickaël Chen
Éloi Zablocki
Matthieu Cord
134
1
0
17 Sep 2024
Winner-takes-all learners are geometry-aware conditional density
  estimators
Winner-takes-all learners are geometry-aware conditional density estimators
Victor Letzelter
David Perera
Cédric Rommel
Mathieu Fontaine
S. Essid
Gael Richard
Patrick Pérez
20
2
0
07 Jun 2024
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
48
2
0
24 May 2024
ProIn: Learning to Predict Trajectory Based on Progressive Interactions
  for Autonomous Driving
ProIn: Learning to Predict Trajectory Based on Progressive Interactions for Autonomous Driving
Yinke Dong
Haifeng Yuan
Hongkun Liu
Wei Jing
Fangzhen Li
Hongmin Liu
Bin Fan
47
2
0
25 Mar 2024
Neural-Kernel Conditional Mean Embeddings
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
37
3
0
16 Mar 2024
Controllable Diverse Sampling for Diffusion Based Motion Behavior
  Forecasting
Controllable Diverse Sampling for Diffusion Based Motion Behavior Forecasting
Yiming Xu
Hao Cheng
Monika Sester
DiffM
43
1
0
06 Feb 2024
Multiple Hypothesis Dropout: Estimating the Parameters of Multi-Modal
  Output Distributions
Multiple Hypothesis Dropout: Estimating the Parameters of Multi-Modal Output Distributions
David D. Nguyen
David Liebowitz
Surya Nepal
S. Kanhere
OOD
UQCV
39
0
0
18 Dec 2023
Pose and shear-based tactile servoing
Pose and shear-based tactile servoing
John Lloyd
Nathan Lepora
25
11
0
13 Dec 2023
ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation
ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation
Cédric Rommel
Victor Letzelter
Nermin Samet
Renaud Marlet
Matthieu Cord
Patrick Pérez
Eduardo Valle
3DH
30
0
0
11 Dec 2023
Maximum Likelihood Estimation of Flexible Survival Densities with
  Importance Sampling
Maximum Likelihood Estimation of Flexible Survival Densities with Importance Sampling
Mert Ketenci
Shreyas Bhave
Noémie Elhadad
A. Perotte
24
0
0
03 Nov 2023
Resilient Multiple Choice Learning: A learned scoring scheme with
  application to audio scene analysis
Resilient Multiple Choice Learning: A learned scoring scheme with application to audio scene analysis
Victor Letzelter
Mathieu Fontaine
Mickaël Chen
Patrick Pérez
S. Essid
Ga¨el Richard
20
6
0
02 Nov 2023
Interpretable and Flexible Target-Conditioned Neural Planners For
  Autonomous Vehicles
Interpretable and Flexible Target-Conditioned Neural Planners For Autonomous Vehicles
Haolan Liu
Jishen Zhao
Liangjun Zhang
27
3
0
23 Sep 2023
Tracing the Influence of Predecessors on Trajectory Prediction
Tracing the Influence of Predecessors on Trajectory Prediction
Mengmeng Liu
Hao Cheng
M. Yang
45
2
0
10 Aug 2023
End-to-End Supervised Multilabel Contrastive Learning
End-to-End Supervised Multilabel Contrastive Learning
A. Sajedi
Samir Khaki
Konstantinos N. Plataniotis
Mahdi S. Hosseini
SSL
29
8
0
08 Jul 2023
Deep Normalizing Flows for State Estimation
Deep Normalizing Flows for State Estimation
Harrison Delecki
Liam A. Kruse
Marc R. Schlichting
Mykel J. Kochenderfer
19
1
0
27 Jun 2023
A pose and shear-based tactile robotic system for object tracking,
  surface following and object pushing
A pose and shear-based tactile robotic system for object tracking, surface following and object pushing
John Lloyd
Nathan Lepora
23
0
0
14 Jun 2023
HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds
  for Human Pose and Shape Distribution Estimation
HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation
A. Sengupta
Ignas Budvytis
R. Cipolla
3DH
25
18
0
11 May 2023
RSPT: Reconstruct Surroundings and Predict Trajectories for
  Generalizable Active Object Tracking
RSPT: Reconstruct Surroundings and Predict Trajectories for Generalizable Active Object Tracking
Fangwei Zhong
Xiao Bi
Yudi Zhang
Wei Zhang
Yizhou Wang
14
11
0
07 Apr 2023
FEND: A Future Enhanced Distribution-Aware Contrastive Learning
  Framework for Long-tail Trajectory Prediction
FEND: A Future Enhanced Distribution-Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
Yuning Wang
Pu Zhang
Lei Bai
Jianru Xue
30
23
0
29 Mar 2023
Task-Oriented Human-Object Interactions Generation with Implicit Neural
  Representations
Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations
Quanzhou Li
Jingbo Wang
Chen Change Loy
Bo Dai
34
26
0
23 Mar 2023
A Laplace-inspired Distribution on SO(3) for Probabilistic Rotation
  Estimation
A Laplace-inspired Distribution on SO(3) for Probabilistic Rotation Estimation
Yingda Yin
Yang Wang
He-Nan Wang
B. Chen
14
12
0
03 Mar 2023
LAformer: Trajectory Prediction for Autonomous Driving with Lane-Aware
  Scene Constraints
LAformer: Trajectory Prediction for Autonomous Driving with Lane-Aware Scene Constraints
Mengmeng Liu
Hao Cheng
Linyuan Chen
Hellward Broszio
Jiangtao Li
Runjiang Zhao
Monika Sester
M. Yang
46
51
0
27 Feb 2023
MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with
  Neural ODEs
MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction with Neural ODEs
Theodor Westny
Joel Oskarsson
Björn Olofsson
Erik Frisk
35
31
0
01 Feb 2023
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly
  Estimating Complex SO(3) Distributions
AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly Estimating Complex SO(3) Distributions
Michael A. Alcorn
27
0
0
21 Jan 2023
Diverse Multimedia Layout Generation with Multi Choice Learning
Diverse Multimedia Layout Generation with Multi Choice Learning
David D. Nguyen
Surya Nepal
S. Kanhere
24
15
0
16 Jan 2023
A Probabilistic Framework for Visual Localization in Ambiguous Scenes
A Probabilistic Framework for Visual Localization in Ambiguous Scenes
Fereidoon Zangeneh
Leonard Bruns
A. Dekel
Alessandro Pieropan
Patric Jensfelt
23
9
0
05 Jan 2023
Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian
  Mixture Models
Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian Mixture Models
Hu Fang
Timo Gerkmann
UQCV
13
3
0
09 Dec 2022
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
  Optimization
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization
Neslihan Kose
R. Krishnan
Akash Dhamasia
Omesh Tickoo
Michael Paulitsch
32
1
0
09 Dec 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
24
4
0
24 Nov 2022
Towards trustworthy multi-modal motion prediction: Holistic evaluation
  and interpretability of outputs
Towards trustworthy multi-modal motion prediction: Holistic evaluation and interpretability of outputs
Sandra Carrasco Limeros
Sylwia Majchrowska
Joakim Johnander
Christoffer Petersson
Miguel Ángel Sotelo
David Fernández Llorca
43
11
0
28 Oct 2022
Safety-compliant Generative Adversarial Networks for Human Trajectory
  Forecasting
Safety-compliant Generative Adversarial Networks for Human Trajectory Forecasting
Parth Kothari
Alexandre Alahi
27
25
0
25 Sep 2022
GATraj: A Graph- and Attention-based Multi-Agent Trajectory Prediction
  Model
GATraj: A Graph- and Attention-based Multi-Agent Trajectory Prediction Model
Hao Cheng
Mengmeng Liu
Linyuan Chen
Hellward Broszio
Monika Sester
M. Yang
49
55
0
16 Sep 2022
Deep-PANTHER: Learning-Based Perception-Aware Trajectory Planner in
  Dynamic Environments
Deep-PANTHER: Learning-Based Perception-Aware Trajectory Planner in Dynamic Environments
J. Tordesillas
Jonathan P. How
21
29
0
02 Sep 2022
Class-Aware Attention for Multimodal Trajectory Prediction
Class-Aware Attention for Multimodal Trajectory Prediction
Bimsara Pathiraja
Shehan Munasinghe
Malshan Ranawella
Maleesha De Silva
Ranga Rodrigo
P. Jayasekara
14
2
0
31 Aug 2022
A novel Deep Learning approach for one-step Conformal Prediction
  approximation
A novel Deep Learning approach for one-step Conformal Prediction approximation
Julia A. Meister
K. Nguyen
S. Kapetanakis
Zhiyuan Luo
18
5
0
25 Jul 2022
Back to the Manifold: Recovering from Out-of-Distribution States
Back to the Manifold: Recovering from Out-of-Distribution States
Alfredo Reichlin
G. Marchetti
Hang Yin
Ali Ghadirzadeh
Danica Kragic
OffRL
38
11
0
18 Jul 2022
Diverse Multiple Trajectory Prediction Using a Two-stage Prediction
  Network Trained with Lane Loss
Diverse Multiple Trajectory Prediction Using a Two-stage Prediction Network Trained with Lane Loss
Sanmin Kim
Hyeongseok Jeon
Junwon Choi
Dongsuk Kum
44
21
0
17 Jun 2022
Continuous and Distribution-free Probabilistic Wind Power Forecasting: A
  Conditional Normalizing Flow Approach
Continuous and Distribution-free Probabilistic Wind Power Forecasting: A Conditional Normalizing Flow Approach
Honglin Wen
Pierre Pinson
Jinghuan Ma
Jie Gu
Zhijiang Jin
32
24
0
06 Jun 2022
Bootstrap Motion Forecasting With Self-Consistent Constraints
Bootstrap Motion Forecasting With Self-Consistent Constraints
Maosheng Ye
Jiamiao Xu
Xun Xu
Tengfei Wang
Tongyi Cao
Qifeng Chen
33
19
0
12 Apr 2022
123
Next