ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02876
  4. Cited By
Compressing RNNs for IoT devices by 15-38x using Kronecker Products

Compressing RNNs for IoT devices by 15-38x using Kronecker Products

7 June 2019
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
ArXivPDFHTML

Papers citing "Compressing RNNs for IoT devices by 15-38x using Kronecker Products"

21 / 21 papers shown
Title
Efficient Zero-Order Federated Finetuning of Language Models for Resource-Constrained Devices
Efficient Zero-Order Federated Finetuning of Language Models for Resource-Constrained Devices
Mohamed Aboelenien Ahmed
Kilian Pfeiffer
R. Khalili
Heba Khdr
J. Henkel
FedML
94
0
0
17 Feb 2025
DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized
  Diffusion Models
DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Models
Shyam Marjit
Harshit Singh
Nityanand Mathur
Sayak Paul
Chia-Mu Yu
Pin-Yu Chen
DiffM
47
2
0
27 Feb 2024
TQCompressor: improving tensor decomposition methods in neural networks
  via permutations
TQCompressor: improving tensor decomposition methods in neural networks via permutations
V. Abronin
A. Naumov
D. Mazur
D. Bystrov
K. Tsarova
Ar. Melnikov
Ivan Oseledets
S. Dolgov
R. Brasher
M. Perelshtein
28
6
0
29 Jan 2024
From array algebra to energy efficiency on GPUs: Data and hardware
  shapes with dimension-lifting to optimize memory-processor layouts
From array algebra to energy efficiency on GPUs: Data and hardware shapes with dimension-lifting to optimize memory-processor layouts
L. Mullin
24
0
0
19 Jun 2023
Low Rank Optimization for Efficient Deep Learning: Making A Balance
  between Compact Architecture and Fast Training
Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training
Xinwei Ou
Zhangxin Chen
Ce Zhu
Yipeng Liu
36
2
0
22 Mar 2023
SeKron: A Decomposition Method Supporting Many Factorization Structures
SeKron: A Decomposition Method Supporting Many Factorization Structures
Marawan Gamal Abdel Hameed
A. Mosleh
Marzieh S. Tahaei
V. Nia
29
1
0
12 Oct 2022
CoCoFL: Communication- and Computation-Aware Federated Learning via
  Partial NN Freezing and Quantization
CoCoFL: Communication- and Computation-Aware Federated Learning via Partial NN Freezing and Quantization
Kilian Pfeiffer
Martin Rapp
R. Khalili
J. Henkel
FedML
13
11
0
10 Mar 2022
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems
Martin Rapp
R. Khalili
Kilian Pfeiffer
J. Henkel
19
18
0
16 Dec 2021
Kronecker Decomposition for GPT Compression
Kronecker Decomposition for GPT Compression
Ali Edalati
Marzieh S. Tahaei
Ahmad Rashid
V. Nia
J. Clark
Mehdi Rezagholizadeh
36
33
0
15 Oct 2021
Convolutional Neural Network Compression through Generalized Kronecker
  Product Decomposition
Convolutional Neural Network Compression through Generalized Kronecker Product Decomposition
Marawan Gamal Abdel Hameed
Marzieh S. Tahaei
A. Mosleh
V. Nia
47
25
0
29 Sep 2021
Compacting Deep Neural Networks for Internet of Things: Methods and
  Applications
Compacting Deep Neural Networks for Internet of Things: Methods and Applications
Ke Zhang
Hanbo Ying
Hongning Dai
Lin Li
Yuangyuang Peng
Keyi Guo
Hongfang Yu
21
38
0
20 Mar 2021
Doping: A technique for efficient compression of LSTM models using
  sparse structured additive matrices
Doping: A technique for efficient compression of LSTM models using sparse structured additive matrices
Urmish Thakker
P. Whatmough
Zhi-Gang Liu
Matthew Mattina
Jesse G. Beu
16
6
0
14 Feb 2021
Paralinguistic Privacy Protection at the Edge
Paralinguistic Privacy Protection at the Edge
Ranya Aloufi
Hamed Haddadi
David E. Boyle
17
14
0
04 Nov 2020
Rank and run-time aware compression of NLP Applications
Rank and run-time aware compression of NLP Applications
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Ganesh S. Dasika
Matthew Mattina
16
11
0
06 Oct 2020
High Throughput Matrix-Matrix Multiplication between Asymmetric
  Bit-Width Operands
High Throughput Matrix-Matrix Multiplication between Asymmetric Bit-Width Operands
Dibakar Gope
Jesse G. Beu
Matthew Mattina
20
4
0
03 Aug 2020
Train Large, Then Compress: Rethinking Model Size for Efficient Training
  and Inference of Transformers
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Zhuohan Li
Eric Wallace
Sheng Shen
Kevin Lin
Kurt Keutzer
Dan Klein
Joseph E. Gonzalez
16
148
0
26 Feb 2020
Federated Learning for Resource-Constrained IoT Devices: Panoramas and
  State-of-the-art
Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-of-the-art
Ahmed Imteaj
Urmish Thakker
Shiqiang Wang
Jian Li
M. Amini
8
59
0
25 Feb 2020
Compressing Language Models using Doped Kronecker Products
Compressing Language Models using Doped Kronecker Products
Urmish Thakker
Paul Whatamough
Zhi-Gang Liu
Matthew Mattina
Jesse G. Beu
6
9
0
24 Jan 2020
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks
Ao Ren
Tao Zhang
Yuhao Wang
Sheng Lin
Peiyan Dong
Yen-kuang Chen
Yuan Xie
Yanzhi Wang
20
11
0
19 Nov 2019
Ternary MobileNets via Per-Layer Hybrid Filter Banks
Ternary MobileNets via Per-Layer Hybrid Filter Banks
Dibakar Gope
Jesse G. Beu
Urmish Thakker
Matthew Mattina
MQ
32
15
0
04 Nov 2019
Run-Time Efficient RNN Compression for Inference on Edge Devices
Run-Time Efficient RNN Compression for Inference on Edge Devices
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Ganesh S. Dasika
Matthew Mattina
13
18
0
12 Jun 2019
1