Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02876
Cited By
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
7 June 2019
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Compressing RNNs for IoT devices by 15-38x using Kronecker Products"
21 / 21 papers shown
Title
Efficient Zero-Order Federated Finetuning of Language Models for Resource-Constrained Devices
Mohamed Aboelenien Ahmed
Kilian Pfeiffer
R. Khalili
Heba Khdr
J. Henkel
FedML
94
0
0
17 Feb 2025
DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Models
Shyam Marjit
Harshit Singh
Nityanand Mathur
Sayak Paul
Chia-Mu Yu
Pin-Yu Chen
DiffM
47
6
0
27 Feb 2024
TQCompressor: improving tensor decomposition methods in neural networks via permutations
V. Abronin
A. Naumov
D. Mazur
D. Bystrov
K. Tsarova
Ar. Melnikov
Ivan Oseledets
S. Dolgov
R. Brasher
M. Perelshtein
28
6
0
29 Jan 2024
From array algebra to energy efficiency on GPUs: Data and hardware shapes with dimension-lifting to optimize memory-processor layouts
L. Mullin
24
0
0
19 Jun 2023
Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training
Xinwei Ou
Zhangxin Chen
Ce Zhu
Yipeng Liu
36
4
0
22 Mar 2023
SeKron: A Decomposition Method Supporting Many Factorization Structures
Marawan Gamal Abdel Hameed
A. Mosleh
Marzieh S. Tahaei
V. Nia
29
1
0
12 Oct 2022
CoCoFL: Communication- and Computation-Aware Federated Learning via Partial NN Freezing and Quantization
Kilian Pfeiffer
Martin Rapp
R. Khalili
J. Henkel
FedML
13
11
0
10 Mar 2022
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems
Martin Rapp
R. Khalili
Kilian Pfeiffer
J. Henkel
19
18
0
16 Dec 2021
Kronecker Decomposition for GPT Compression
Ali Edalati
Marzieh S. Tahaei
Ahmad Rashid
V. Nia
J. Clark
Mehdi Rezagholizadeh
36
33
0
15 Oct 2021
Convolutional Neural Network Compression through Generalized Kronecker Product Decomposition
Marawan Gamal Abdel Hameed
Marzieh S. Tahaei
A. Mosleh
V. Nia
47
25
0
29 Sep 2021
Compacting Deep Neural Networks for Internet of Things: Methods and Applications
Ke Zhang
Hanbo Ying
Hongning Dai
Lin Li
Yuangyuang Peng
Keyi Guo
Hongfang Yu
18
38
0
20 Mar 2021
Doping: A technique for efficient compression of LSTM models using sparse structured additive matrices
Urmish Thakker
P. Whatmough
Zhi-Gang Liu
Matthew Mattina
Jesse G. Beu
16
6
0
14 Feb 2021
Paralinguistic Privacy Protection at the Edge
Ranya Aloufi
Hamed Haddadi
David E. Boyle
17
14
0
04 Nov 2020
Rank and run-time aware compression of NLP Applications
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Ganesh S. Dasika
Matthew Mattina
16
11
0
06 Oct 2020
High Throughput Matrix-Matrix Multiplication between Asymmetric Bit-Width Operands
Dibakar Gope
Jesse G. Beu
Matthew Mattina
20
4
0
03 Aug 2020
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Zhuohan Li
Eric Wallace
Sheng Shen
Kevin Lin
Kurt Keutzer
Dan Klein
Joseph E. Gonzalez
14
148
0
26 Feb 2020
Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-of-the-art
Ahmed Imteaj
Urmish Thakker
Shiqiang Wang
Jian Li
M. Amini
8
59
0
25 Feb 2020
Compressing Language Models using Doped Kronecker Products
Urmish Thakker
Paul Whatamough
Zhi-Gang Liu
Matthew Mattina
Jesse G. Beu
6
9
0
24 Jan 2020
DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks
Ao Ren
Tao Zhang
Yuhao Wang
Sheng Lin
Peiyan Dong
Yen-kuang Chen
Yuan Xie
Yanzhi Wang
20
11
0
19 Nov 2019
Ternary MobileNets via Per-Layer Hybrid Filter Banks
Dibakar Gope
Jesse G. Beu
Urmish Thakker
Matthew Mattina
MQ
32
15
0
04 Nov 2019
Run-Time Efficient RNN Compression for Inference on Edge Devices
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Ganesh S. Dasika
Matthew Mattina
11
18
0
12 Jun 2019
1