ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02314
  4. Cited By
A Tunable Loss Function for Robust Classification: Calibration,
  Landscape, and Generalization

A Tunable Loss Function for Robust Classification: Calibration, Landscape, and Generalization

5 June 2019
Tyler Sypherd
Mario Díaz
J. Cava
Gautam Dasarathy
Peter Kairouz
Lalitha Sankar
ArXivPDFHTML

Papers citing "A Tunable Loss Function for Robust Classification: Calibration, Landscape, and Generalization"

9 / 9 papers shown
Title
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced
  linear classification
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
Hyenkyun Woo
20
0
0
26 Dec 2023
Smoothly Giving up: Robustness for Simple Models
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
21
1
0
17 Feb 2023
LegendreTron: Uprising Proper Multiclass Loss Learning
LegendreTron: Uprising Proper Multiclass Loss Learning
Kevin Lam
Christian J. Walder
S. Penev
Richard Nock
52
0
0
27 Jan 2023
Robust PAC$^m$: Training Ensemble Models Under Misspecification and
  Outliers
Robust PACm^mm: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
14
5
0
03 Mar 2022
An Information-theoretical Approach to Semi-supervised Learning under
  Covariate-shift
An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift
Gholamali Aminian
Mahed Abroshan
Mohammad Mahdi Khalili
Laura Toni
M. Rodrigues
OOD
28
27
0
24 Feb 2022
On Tilted Losses in Machine Learning: Theory and Applications
On Tilted Losses in Machine Learning: Theory and Applications
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
55
38
0
13 Sep 2021
Being Properly Improper
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
Realizing GANs via a Tunable Loss Function
Realizing GANs via a Tunable Loss Function
Gowtham R. Kurri
Tyler Sypherd
Lalitha Sankar
GAN
8
15
0
09 Jun 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
227
348
0
14 Jun 2018
1