Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02314
Cited By
A Tunable Loss Function for Robust Classification: Calibration, Landscape, and Generalization
5 June 2019
Tyler Sypherd
Mario Díaz
J. Cava
Gautam Dasarathy
Peter Kairouz
Lalitha Sankar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Tunable Loss Function for Robust Classification: Calibration, Landscape, and Generalization"
9 / 9 papers shown
Title
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
Hyenkyun Woo
20
0
0
26 Dec 2023
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
21
1
0
17 Feb 2023
LegendreTron: Uprising Proper Multiclass Loss Learning
Kevin Lam
Christian J. Walder
S. Penev
Richard Nock
49
0
0
27 Jan 2023
Robust PAC
m
^m
m
: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
14
5
0
03 Mar 2022
An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift
Gholamali Aminian
Mahed Abroshan
Mohammad Mahdi Khalili
Laura Toni
M. Rodrigues
OOD
28
27
0
24 Feb 2022
On Tilted Losses in Machine Learning: Theory and Applications
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
55
38
0
13 Sep 2021
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
Realizing GANs via a Tunable Loss Function
Gowtham R. Kurri
Tyler Sypherd
Lalitha Sankar
GAN
6
15
0
09 Jun 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
227
348
0
14 Jun 2018
1