ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01200
  4. Cited By
Learning Neural PDE Solvers with Convergence Guarantees

Learning Neural PDE Solvers with Convergence Guarantees

4 June 2019
Jun-Ting Hsieh
Shengjia Zhao
Stephan Eismann
L. Mirabella
Stefano Ermon
    AI4CE
ArXivPDFHTML

Papers citing "Learning Neural PDE Solvers with Convergence Guarantees"

28 / 28 papers shown
Title
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
56
0
0
28 Apr 2025
Unsupervised Representation Learning from Sparse Transformation Analysis
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
31
0
0
07 Oct 2024
Weak baselines and reporting biases lead to overoptimism in machine
  learning for fluid-related partial differential equations
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
43
0
09 Jul 2024
Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations
Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations
Zijie Li
Saurabh Patil
Francis Ogoke
Dule Shu
Wilson Zhen
Michael Schneier
John R. Buchanan
A. Farimani
AI4CE
40
5
0
27 Feb 2024
Neural Multigrid Architectures
Neural Multigrid Architectures
V. Fanaskov
8
3
0
08 Feb 2024
A Spectral Approach for Learning Spatiotemporal Neural Differential
  Equations
A Spectral Approach for Learning Spatiotemporal Neural Differential Equations
Mingtao Xia
Xiangting Li
Qijing Shen
Tom Chou
19
0
0
28 Sep 2023
Invariant preservation in machine learned PDE solvers via error
  correction
Invariant preservation in machine learned PDE solvers via error correction
N. McGreivy
Ammar Hakim
AI4CE
PINN
29
8
0
28 Mar 2023
Neural Partial Differential Equations with Functional Convolution
Neural Partial Differential Equations with Functional Convolution
Z. Wu
Xingzhe He
Yijun Li
Cheng Yang
Rui Liu
S. Xiong
Bo Zhu
23
1
0
10 Mar 2023
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
  Spatial-temporal Decomposition
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Xinquan Huang
Wenlei Shi
Qi Meng
Yue Wang
Xiaotian Gao
Jia Zhang
Tie-Yan Liu
AI4CE
23
8
0
20 Feb 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher
  order deep operator learning for parametric partial differential equations
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
29
1
0
07 Feb 2023
An Implicit GNN Solver for Poisson-like problems
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
34
2
0
06 Feb 2023
Neural Network Approximations of PDEs Beyond Linearity: A
  Representational Perspective
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
119
0
30 Sep 2022
Transformer for Partial Differential Equations' Operator Learning
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
144
0
26 May 2022
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid
  Simulations
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
24
3
0
02 May 2022
Side Effects of Learning from Low-dimensional Data Embedded in a
  Euclidean Space
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
36
8
0
01 Mar 2022
Learning To Estimate Regions Of Attraction Of Autonomous Dynamical
  Systems Using Physics-Informed Neural Networks
Learning To Estimate Regions Of Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural Networks
Cody Scharzenberger
Joe Hays
40
3
0
18 Nov 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed
  Learning
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
40
22
0
28 Sep 2021
Performance and accuracy assessments of an incompressible fluid solver
  coupled with a deep Convolutional Neural Network
Performance and accuracy assessments of an incompressible fluid solver coupled with a deep Convolutional Neural Network
Ekhi Ajuria Illarramendi
M. Bauerheim
B. Cuenot
33
19
0
20 Sep 2021
Cell-average based neural network method for hyperbolic and parabolic
  partial differential equations
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
16
10
0
02 Jul 2021
Neural network architectures using min-plus algebra for solving certain
  high dimensional optimal control problems and Hamilton-Jacobi PDEs
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
Learning optimal multigrid smoothers via neural networks
Learning optimal multigrid smoothers via neural networks
Ru Huang
Ruipeng Li
Yuanzhe Xi
AI4CE
18
27
0
24 Feb 2021
Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks
Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks
Qiaoying Huang
Eric Z. Chen
Hanchao Yu
Yimo Guo
Terrence Chen
Dimitris N. Metaxas
Shanhui Sun
14
1
0
25 Aug 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
  Equations using Finite Volume Discretization
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
Enhancement of shock-capturing methods via machine learning
Enhancement of shock-capturing methods via machine learning
Ben Stevens
T. Colonius
12
46
0
06 Feb 2020
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical
  Response Prediction
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical Response Prediction
Houpu Yao
Yi Gao
Yongming Liu
AI4CE
61
66
0
31 Jan 2020
Learning to Control PDEs with Differentiable Physics
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
44
185
0
21 Jan 2020
Variational training of neural network approximations of solution maps
  for physical models
Variational training of neural network approximations of solution maps for physical models
Yingzhou Li
Jianfeng Lu
Anqi Mao
GAN
19
35
0
07 May 2019
1