Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01200
Cited By
Learning Neural PDE Solvers with Convergence Guarantees
4 June 2019
Jun-Ting Hsieh
Shengjia Zhao
Stephan Eismann
L. Mirabella
Stefano Ermon
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Neural PDE Solvers with Convergence Guarantees"
28 / 28 papers shown
Title
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
56
0
0
28 Apr 2025
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
31
0
0
07 Oct 2024
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
43
0
09 Jul 2024
Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations
Zijie Li
Saurabh Patil
Francis Ogoke
Dule Shu
Wilson Zhen
Michael Schneier
John R. Buchanan
A. Farimani
AI4CE
40
5
0
27 Feb 2024
Neural Multigrid Architectures
V. Fanaskov
8
3
0
08 Feb 2024
A Spectral Approach for Learning Spatiotemporal Neural Differential Equations
Mingtao Xia
Xiangting Li
Qijing Shen
Tom Chou
19
0
0
28 Sep 2023
Invariant preservation in machine learned PDE solvers via error correction
N. McGreivy
Ammar Hakim
AI4CE
PINN
29
8
0
28 Mar 2023
Neural Partial Differential Equations with Functional Convolution
Z. Wu
Xingzhe He
Yijun Li
Cheng Yang
Rui Liu
S. Xiong
Bo Zhu
23
1
0
10 Mar 2023
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Xinquan Huang
Wenlei Shi
Qi Meng
Yue Wang
Xiaotian Gao
Jia Zhang
Tie-Yan Liu
AI4CE
23
8
0
20 Feb 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
29
1
0
07 Feb 2023
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
34
2
0
06 Feb 2023
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
119
0
30 Sep 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
144
0
26 May 2022
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
24
3
0
02 May 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
36
8
0
01 Mar 2022
Learning To Estimate Regions Of Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural Networks
Cody Scharzenberger
Joe Hays
40
3
0
18 Nov 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
40
22
0
28 Sep 2021
Performance and accuracy assessments of an incompressible fluid solver coupled with a deep Convolutional Neural Network
Ekhi Ajuria Illarramendi
M. Bauerheim
B. Cuenot
33
19
0
20 Sep 2021
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
16
10
0
02 Jul 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
Learning optimal multigrid smoothers via neural networks
Ru Huang
Ruipeng Li
Yuanzhe Xi
AI4CE
18
27
0
24 Feb 2021
Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks
Qiaoying Huang
Eric Z. Chen
Hanchao Yu
Yimo Guo
Terrence Chen
Dimitris N. Metaxas
Shanhui Sun
14
1
0
25 Aug 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
Enhancement of shock-capturing methods via machine learning
Ben Stevens
T. Colonius
12
46
0
06 Feb 2020
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical Response Prediction
Houpu Yao
Yi Gao
Yongming Liu
AI4CE
61
66
0
31 Jan 2020
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
44
185
0
21 Jan 2020
Variational training of neural network approximations of solution maps for physical models
Yingzhou Li
Jianfeng Lu
Anqi Mao
GAN
19
35
0
07 May 2019
1