ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00957
  4. Cited By
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules

Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules

2 June 2019
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
ArXivPDFHTML

Papers citing "Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules"

30 / 130 papers shown
Title
Keeping it Simple: Language Models can learn Complex Molecular
  Distributions
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
133
142
0
06 Dec 2021
Crystal Diffusion Variational Autoencoder for Periodic Material
  Generation
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
212
232
0
12 Oct 2021
Iterative Refinement Graph Neural Network for Antibody
  Sequence-Structure Co-design
Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design
Wengong Jin
Jeremy Wohlwend
Regina Barzilay
Tommi Jaakkola
22
136
0
09 Oct 2021
Inverse design of 3d molecular structures with conditional generative
  neural networks
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
192
166
0
10 Sep 2021
Generating stable molecules using imitation and reinforcement learning
Generating stable molecules using imitation and reinforcement learning
S. A. Meldgaard
Jonas Köhler
H. L. Mortensen
Mads-Peter V. Christiansen
Frank Noé
B. Hammer
185
13
0
11 Jul 2021
Particle Cloud Generation with Message Passing Generative Adversarial
  Networks
Particle Cloud Generation with Message Passing Generative Adversarial Networks
Raghav Kansal
Javier Mauricio Duarte
Haoran Su
B. Orzari
T. Tomei
M. Pierini
M. Touranakou
J. Vlimant
Dimitrios Gunopulos
27
75
0
22 Jun 2021
Augmenting Molecular Deep Generative Models with Topological Data
  Analysis Representations
Augmenting Molecular Deep Generative Models with Topological Data Analysis Representations
Yair Schiff
Vijil Chenthamarakshan
Samuel C. Hoffman
K. Ramamurthy
Payel Das
MedIm
24
9
0
08 Jun 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
37
168
0
19 May 2021
An End-to-End Framework for Molecular Conformation Generation via
  Bilevel Programming
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
Minkai Xu
Wujie Wang
Shitong Luo
Chence Shi
Yoshua Bengio
Rafael Gómez-Bombarelli
Jian Tang
3DV
37
78
0
15 May 2021
Learning to design drug-like molecules in three-dimensional space using
  deep generative models
Learning to design drug-like molecules in three-dimensional space using deep generative models
Yibo Li
Jianfeng Pei
L. Lai
DiffM
35
111
0
17 Apr 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
19
115
0
20 Feb 2021
Artificial Intelligence based Autonomous Molecular Design for Medical
  Therapeutic: A Perspective
Artificial Intelligence based Autonomous Molecular Design for Medical Therapeutic: A Perspective
R. P. Joshi
Neeraj Kumar
16
2
0
10 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
36
512
0
05 Feb 2021
HydroNet: Benchmark Tasks for Preserving Intermolecular Interactions and
  Structural Motifs in Predictive and Generative Models for Molecular Data
HydroNet: Benchmark Tasks for Preserving Intermolecular Interactions and Structural Motifs in Predictive and Generative Models for Molecular Data
Sutanay Choudhury
Jenna A. Bilbrey
Logan T. Ward
S. Xantheas
Ian Foster
Josef Heindel
Ben Blaiszik
Marcus Schwarting
30
3
0
30 Nov 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Machine learning of solvent effects on molecular spectra and reactions
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
17
59
0
28 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
34
887
0
14 Oct 2020
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
173
33
0
08 Oct 2020
Graph Polish: A Novel Graph Generation Paradigm for Molecular
  Optimization
Graph Polish: A Novel Graph Generation Paradigm for Molecular Optimization
Chaojie Ji
Yijia Zheng
Ruxin Wang
Yunpeng Cai
Hongyan Wu
26
17
0
14 Aug 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
17
257
0
10 Jul 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
31
206
0
09 Jun 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
21
82
0
18 Feb 2020
Generating valid Euclidean distance matrices
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
19
56
0
07 Oct 2019
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Jordan Hoffmann
Louis Maestrati
Yoshihide Sawada
Jian Tang
Jean Michel D. Sellier
Yoshua Bengio
DiffM
3DV
17
66
0
03 Sep 2019
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedIm
AI4CE
32
81
0
02 Jul 2019
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
206
885
0
07 Jun 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
22
211
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
199
1,778
0
02 Mar 2017
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
171
1,940
0
24 Oct 2016
Previous
123