ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00325
  4. Cited By
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode
  Discovery in Dynamical Systems

Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems

2 June 2019
Wei Chen
Hythem Sidky
Andrew L. Ferguson
ArXivPDFHTML

Papers citing "Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems"

5 / 5 papers shown
Title
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Machine Learning of Slow Collective Variables and Enhanced Sampling via Spatial Techniques
Tuğçe Gökdemir
Jakub Rydzewski
31
1
0
31 Dec 2024
A Functional approach for Two Way Dimension Reduction in Time Series
A Functional approach for Two Way Dimension Reduction in Time Series
Aniruddha Rajendra Rao
Haiyan Wang
Chetan Gupta
AI4TS
19
1
0
01 Jan 2023
Interpretable Embeddings From Molecular Simulations Using Gaussian
  Mixture Variational Autoencoders
Interpretable Embeddings From Molecular Simulations Using Gaussian Mixture Variational Autoencoders
Yasemin Bozkurt Varolgunes
T. Bereau
J. F. Rudzinski
DRL
12
42
0
22 Dec 2019
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
111
356
0
30 Oct 2017
Estimation and uncertainty of reversible Markov models
Estimation and uncertainty of reversible Markov models
Benjamin Trendelkamp-Schroer
Hao Wu
Fabian Paul
Frank Noé
76
129
0
19 Jul 2015
1