Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13736
Cited By
Unlabeled Data Improves Adversarial Robustness
31 May 2019
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unlabeled Data Improves Adversarial Robustness"
50 / 225 papers shown
Title
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
28
308
0
17 May 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
33
44
0
19 Apr 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
24
18
0
16 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
38
65
0
09 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
26
76
0
06 Apr 2021
Combating Adversaries with Anti-Adversaries
Motasem Alfarra
Juan C. Pérez
Ali K. Thabet
Adel Bibi
Philip Torr
Guohao Li
AAML
34
27
0
26 Mar 2021
StyleLess layer: Improving robustness for real-world driving
Julien Rebut
Andrei Bursuc
P. Pérez
30
5
0
25 Mar 2021
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
36
8
0
08 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
271
0
02 Mar 2021
Evaluating the Robustness of Geometry-Aware Instance-Reweighted Adversarial Training
Dorjan Hitaj
Giulio Pagnotta
I. Masi
L. Mancini
OOD
AAML
26
22
0
02 Mar 2021
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
Maura Pintor
Fabio Roli
Wieland Brendel
Battista Biggio
AAML
51
70
0
25 Feb 2021
Multiplicative Reweighting for Robust Neural Network Optimization
Noga Bar
Tomer Koren
Raja Giryes
OOD
NoLa
18
9
0
24 Feb 2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao
Pavol Bielik
Petar Tsankov
Martin Vechev
AAML
19
24
0
23 Feb 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
26
47
0
20 Feb 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
37
10
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
23
29
0
13 Feb 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
36
67
0
11 Feb 2021
Proof Artifact Co-training for Theorem Proving with Language Models
Jesse Michael Han
Jason M. Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
AIMat
27
121
0
11 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
86
476
0
02 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
22
11
0
22 Dec 2020
Self-Progressing Robust Training
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAML
VLM
29
9
0
22 Dec 2020
Composite Adversarial Attacks
Xiaofeng Mao
YueFeng Chen
Shuhui Wang
Hang Su
Yuan He
Hui Xue
AAML
33
48
0
10 Dec 2020
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip Torr
Guohao Li
UQCV
28
34
0
08 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
28
92
0
30 Nov 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
21
24
0
15 Nov 2020
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
36
38
0
29 Oct 2020
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
227
0
26 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
681
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
36
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
22
324
0
07 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
16
108
0
05 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
47
269
0
05 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi Ma
Yuan Yao
AAML
37
26
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
29
11
0
21 Sep 2020
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
16
12
0
17 Sep 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
417
0
16 Jul 2020
An Empirical Study on Robustness to Spurious Correlations using Pre-trained Language Models
Lifu Tu
Garima Lalwani
Spandana Gella
He He
LRM
33
184
0
14 Jul 2020
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
S. Goldwasser
Adam Tauman Kalai
Y. Kalai
Omar Montasser
AAML
22
38
0
10 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
48
536
0
01 Jul 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
26
45
0
29 Jun 2020
Statistical and Algorithmic Insights for Semi-supervised Learning with Self-training
Samet Oymak
Talha Cihad Gulcu
24
20
0
19 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
29
85
0
17 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
28
247
0
13 Jun 2020
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Yuzhe Yang
Zhi Xu
SSL
20
401
0
13 Jun 2020
Large-Scale Adversarial Training for Vision-and-Language Representation Learning
Zhe Gan
Yen-Chun Chen
Linjie Li
Chen Zhu
Yu Cheng
Jingjing Liu
ObjD
VLM
35
489
0
11 Jun 2020
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers
S. Melacci
Gabriele Ciravegna
Angelo Sotgiu
Ambra Demontis
Battista Biggio
Marco Gori
Fabio Roli
22
14
0
06 Jun 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
19
92
0
05 May 2020
Previous
1
2
3
4
5
Next