Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13655
Cited By
Implicit Regularization in Deep Matrix Factorization
31 May 2019
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Regularization in Deep Matrix Factorization"
50 / 109 papers shown
Title
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
44
5
0
15 Jul 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
42
27
0
08 Jul 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
33
31
0
20 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
33
3
0
14 Jun 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
40
70
0
14 Jun 2022
Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
Byungchan Ko
Jungseul Ok
OnRL
27
5
0
01 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
14
8
0
30 May 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
35
25
0
29 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
73
8
0
24 May 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
27
34
0
12 May 2022
Interventional Multi-Instance Learning with Deconfounded Instance-Level Prediction
Tiancheng Lin
Hongteng Xu
Canqian Yang
Yi Xu
27
24
0
20 Apr 2022
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
45
127
0
11 Apr 2022
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
43
32
0
10 Mar 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
36
8
0
01 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
30
6
0
27 Feb 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
36
12
0
13 Dec 2021
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
A. Kerekes
Anna Mészáros
Ferenc Huszár
ODL
29
4
0
22 Nov 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya Zhang
27
16
0
23 Oct 2021
Learning Rich Nearest Neighbor Representations from Self-supervised Ensembles
Bram Wallace
Devansh Arpit
Huan Wang
Caiming Xiong
SSL
OOD
30
0
0
19 Oct 2021
Understanding Dimensional Collapse in Contrastive Self-supervised Learning
Li Jing
Pascal Vincent
Yann LeCun
Yuandong Tian
SSL
25
338
0
18 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
79
10
0
13 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
50
6
0
12 Oct 2021
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Tensor Methods in Computer Vision and Deep Learning
Yannis Panagakis
Jean Kossaifi
Grigorios G. Chrysos
James Oldfield
M. Nicolaou
Anima Anandkumar
S. Zafeiriou
27
119
0
07 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
34
17
0
04 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Learning distinct features helps, provably
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
MLT
36
6
0
10 Jun 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
34
27
0
16 Feb 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
28
40
0
01 Oct 2020
Interventional Few-Shot Learning
Zhongqi Yue
Hanwang Zhang
Qianru Sun
Xiansheng Hua
26
225
0
28 Sep 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
42
29
0
13 Jul 2020
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
23
153
0
22 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
16
4
0
22 Feb 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
Previous
1
2
3
Next