ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12417
  4. Cited By
Deep Factors for Forecasting

Deep Factors for Forecasting

28 May 2019
Bernie Wang
Alex Smola
Danielle C. Maddix
Jan Gasthaus
Dean Phillips Foster
Tim Januschowski
    BDL
ArXivPDFHTML

Papers citing "Deep Factors for Forecasting"

18 / 18 papers shown
Title
Deep Factors with Gaussian Processes for Forecasting
Deep Factors with Gaussian Processes for Forecasting
Danielle C. Maddix
Bernie Wang
Alex Smola
BDL
UQCV
AI4TS
54
41
0
30 Nov 2018
ARMDN: Associative and Recurrent Mixture Density Networks for eRetail
  Demand Forecasting
ARMDN: Associative and Recurrent Mixture Density Networks for eRetail Demand Forecasting
Srayanta Mukherjee
Devashish Shankar
Atin Ghosh
Nilam Tathawadekar
Pramod Kompalli
Sunita Sarawagi
K. Chaudhury
BDL
38
30
0
10 Mar 2018
State Space LSTM Models with Particle MCMC Inference
State Space LSTM Models with Particle MCMC Inference
Xun Zheng
Manzil Zaheer
Amr Ahmed
Yansen Wang
Eric Xing
Alex Smola
BDL
66
46
0
30 Nov 2017
A Multi-Horizon Quantile Recurrent Forecaster
A Multi-Horizon Quantile Recurrent Forecaster
Ruofeng Wen
Kari Torkkola
Balakrishnan Narayanaswamy
Dhruv Madeka
BDL
AI4TS
59
429
0
29 Nov 2017
Auto-Differentiating Linear Algebra
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
47
40
0
24 Oct 2017
A Unified Framework for Long Range and Cold Start Forecasting of
  Seasonal Profiles in Time Series
A Unified Framework for Long Range and Cold Start Forecasting of Seasonal Profiles in Time Series
Christopher Xie
Alex Tank
Alexander Greaves-Tunnell
E. Fox
AI4TS
25
7
0
23 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
61
283
0
16 Oct 2017
Approximate Bayesian Inference in Linear State Space Models for
  Intermittent Demand Forecasting at Scale
Approximate Bayesian Inference in Linear State Space Models for Intermittent Demand Forecasting at Scale
Matthias Seeger
Syama Sundar Rangapuram
Bernie Wang
David Salinas
Jan Gasthaus
Tim Januschowski
Valentin Flunkert
BDL
52
18
0
22 Sep 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TS
UQCV
BDL
81
2,101
0
13 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
715
5,798
0
05 Dec 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
86
456
0
30 Sep 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
109
397
0
24 May 2016
MXNet: A Flexible and Efficient Machine Learning Library for
  Heterogeneous Distributed Systems
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
Tianqi Chen
Mu Li
Yutian Li
Min Lin
Naiyan Wang
Minjie Wang
Tianjun Xiao
Bing Xu
Chiyuan Zhang
Zheng Zhang
184
2,244
0
03 Dec 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
67
372
0
16 Nov 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
82
1,256
0
07 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
705
9,290
0
06 Jun 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
422
16,944
0
20 Dec 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
111
1,179
0
02 Nov 2012
1