Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12090
Cited By
v1
v2 (latest)
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
28 May 2019
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
Re-assign community
ArXiv (abs)
PDF
HTML
Github (47★)
Papers citing
"Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems"
20 / 20 papers shown
Title
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
235
4
0
23 Aug 2024
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
86
8
0
10 Jun 2022
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
76
110
0
09 Oct 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
457
5,168
0
19 Jun 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
184
198
0
13 Feb 2018
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
82
58
0
09 Feb 2018
Scalable Variational Inference for Dynamical Systems
Nico S. Gorbach
Stefan Bauer
J. M. Buhmann
BDL
57
49
0
19 May 2017
Recurrent switching linear dynamical systems
Scott W. Linderman
Andrew C. Miller
Ryan P. Adams
David M. Blei
Liam Paninski
Matthew J. Johnson
113
73
0
26 Oct 2016
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
180
2,945
0
07 Oct 2016
Automatic Variational ABC
Alexander Moreno
T. Adel
Edward Meeds
James M. Rehg
Max Welling
166
12
0
28 Jun 2016
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
84
155
0
26 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
57
375
0
20 May 2016
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
92
485
0
20 Mar 2016
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
83
161
0
23 Nov 2015
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
77
374
0
16 Nov 2015
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
282
1,246
0
01 Sep 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
484
16,922
0
20 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
277
2,628
0
29 Jun 2012
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
Tina Toni
David Welch
N. Strelkowa
Andreas Ipsen
M. Stumpf
261
1,552
0
14 Jan 2009
1