ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11741
  4. Cited By
Variational Information Bottleneck for Unsupervised Clustering: Deep
  Gaussian Mixture Embedding

Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding

28 May 2019
Yiğit Uğur
George Arvanitakis
Milad Sefidgaran
    BDL
    DRL
ArXivPDFHTML

Papers citing "Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding"

11 / 11 papers shown
Title
On the Information Bottleneck Problems: Models, Connections,
  Applications and Information Theoretic Views
On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views
Milad Sefidgaran
Iñaki Estella Aguerri
S. Shamai
46
90
0
31 Jan 2020
Distributed Variational Representation Learning
Distributed Variational Representation Learning
Iñaki Estella Aguerri
Milad Sefidgaran
50
72
0
11 Jul 2018
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,409
0
02 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
119
1,720
0
01 Dec 2016
Variational Deep Embedding: An Unsupervised and Generative Approach to
  Clustering
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Zhuxi Jiang
Yin Zheng
Huachun Tan
Bangsheng Tang
Hanning Zhou
BDL
DRL
69
732
0
16 Nov 2016
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
57
658
0
08 Nov 2016
Information Dropout: Learning Optimal Representations Through Noisy
  Computation
Information Dropout: Learning Optimal Representations Through Noisy Computation
Alessandro Achille
Stefano Soatto
OOD
DRL
SSL
57
401
0
04 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Unsupervised Deep Embedding for Clustering Analysis
Unsupervised Deep Embedding for Clustering Analysis
Junyuan Xie
Ross B. Girshick
Ali Farhadi
SSL
84
2,874
0
19 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
450
16,933
0
20 Dec 2013
1