Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11697
Cited By
Deep Scale-spaces: Equivariance Over Scale
28 May 2019
Daniel E. Worrall
Max Welling
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Scale-spaces: Equivariance Over Scale"
50 / 61 papers shown
Title
AdS-GNN -- a Conformally Equivariant Graph Neural Network
Maksim Zhdanov
Nabil Iqbal
Erik Bekkers
Patrick Forré
19
1
0
19 May 2025
Inversion of Magnetic Data using Learned Dictionaries and Scale Space
Shadab Ahamed
Simon Ghyselincks
Pablo Chang Huang Arias
Julian Kloiber
Yasin Ranjbar
Jingrong Tang
N. Zakariaei
Eldad Haber
AI4CE
66
0
0
08 Feb 2025
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
36
0
0
07 Oct 2024
Feature-Centered First Order Structure Tensor Scale-Space in 2D and 3D
Pawel Tomasz Pieta
Anders Bjorholm Dahl
J. Frisvad
Siavash Bigdeli
Anders Christensen
24
2
0
20 Sep 2024
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
53
1
0
17 Sep 2024
Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators
Tony Lindeberg
36
2
0
08 May 2024
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
48
2
0
06 Oct 2023
Learning Lie Group Symmetry Transformations with Neural Networks
Alex Gabel
Victoria G Klein
Riccardo Valperga
J. Lamb
K. Webster
Rick Quax
E. Gavves
33
5
0
04 Jul 2023
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
Zhuokai Zhao
Takumi Matsuzawa
W. Irvine
Michael Maire
G. Kindlmann
54
2
0
31 May 2023
Rotation-Scale Equivariant Steerable Filters
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
30
3
0
10 Apr 2023
Scale-Equivariant UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
28
12
0
10 Apr 2023
Covariance properties under natural image transformations for the generalized Gaussian derivative model for visual receptive fields
T. Lindeberg
29
11
0
17 Mar 2023
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
Alexandru Paul Condurache
18
4
0
02 Mar 2023
Empowering Networks With Scale and Rotation Equivariance Using A Similarity Convolution
Zikai Sun
T. Blu
27
6
0
01 Mar 2023
Scale-aware neural calibration for wide swath altimetry observations
Q. Febvre
C. Ubelmann
Julien Le Sommer
Ronan Fablet
24
4
0
09 Feb 2023
MorphPool: Efficient Non-linear Pooling & Unpooling in CNNs
R. Groenendijk
Leo Dorst
Theo Gevers
19
3
0
25 Nov 2022
Homomorphic Self-Supervised Learning
Thomas Anderson Keller
Xavier Suau
Luca Zappella
SSL
21
2
0
15 Nov 2022
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
40
2
0
17 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
51
8
0
07 Oct 2022
Analysis of (sub-)Riemannian PDE-G-CNNs
Gijs Bellaard
Daan Bon
Gautam Pai
B. Smets
R. Duits
AI4CE
32
12
0
03 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
120
0
30 Sep 2022
Maximum Class Separation as Inductive Bias in One Matrix
Tejaswi Kasarla
Gertjan J. Burghouts
Max van Spengler
Elise van der Pol
Rita Cucchiara
Pascal Mettes
26
22
0
17 Jun 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
22
7
0
21 Apr 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
29
33
0
14 Apr 2022
Sensing Theorems for Unsupervised Learning in Linear Inverse Problems
Julián Tachella
Dongdong Chen
Mike Davies
SSL
27
24
0
23 Mar 2022
Similarity Equivariant Linear Transformation of Joint Orientation-Scale Space Representations
Xinhua Zhang
L. Williams
29
2
0
13 Mar 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
31
17
0
24 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
41
44
0
22 Feb 2022
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
M. Rath
Alexandru Paul Condurache
25
8
0
08 Feb 2022
Symmetry-aware Neural Architecture for Embodied Visual Navigation
Shuang Liu
Takayuki Okatani
34
1
0
17 Dec 2021
Dilated convolution with learnable spacings
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
28
31
0
07 Dec 2021
Co-domain Symmetry for Complex-Valued Deep Learning
Utkarsh Singhal
Yifei Xing
Stella X. Yu
33
12
0
02 Dec 2021
Implicit Equivariance in Convolutional Networks
Naman Khetan
Tushar Arora
S. U. Rehman
D. K. Gupta
31
4
0
28 Nov 2021
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
27
8
0
22 Nov 2021
Wiggling Weights to Improve the Robustness of Classifiers
Sadaf Gulshad
Ivan Sosnovik
A. Smeulders
OOD
30
0
0
18 Nov 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
23
28
0
19 Oct 2021
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
Cengiz Pehlevan
18
5
0
14 Oct 2021
Topographic VAEs learn Equivariant Capsules
Thomas Anderson Keller
Max Welling
BDL
46
38
0
03 Sep 2021
Alias-Free Generative Adversarial Networks
Tero Karras
M. Aittala
S. Laine
Erik Härkönen
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
116
1,566
0
23 Jun 2021
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
13
23
0
11 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
40
22
0
07 Jun 2021
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
Equivariant Wavelets: Fast Rotation and Translation Invariant Wavelet Scattering Transforms
A. Saydjari
D. Finkbeiner
33
20
0
22 Apr 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
186
0
19 Apr 2021
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
22
5
0
08 Dec 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
Self-Supervised Nuclei Segmentation in Histopathological Images Using Attention
M. Sahasrabudhe
Stergios Christodoulidis
R. Salgado
S. Michiels
S. Loi
Fabrice André
Nikos Paragios
Maria Vakalopoulou
25
64
0
16 Jul 2020
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol
Daniel E. Worrall
H. V. Hoof
F. Oliehoek
Max Welling
BDL
AI4CE
31
156
0
30 Jun 2020
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
30
69
0
18 Jun 2020
1
2
Next