Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10994
Cited By
ODE
2
^2
2
VAE: Deep generative second order ODEs with Bayesian neural networks
27 May 2019
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural networks"
21 / 21 papers shown
Title
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
44
2
0
21 Jun 2023
Hawkes Process Based on Controlled Differential Equations
Minju Jo
Seung-Uk Kook
Noseong Park
AI4TS
37
1
0
09 May 2023
VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODEs
Moayed Haji-Ali
Andrew Bond
Tolga Birdal
Duygu Ceylan
Levent Karacan
Erkut Erdem
Aykut Erdem
VGen
DiffM
128
2
0
12 Apr 2023
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
35
1
0
17 Nov 2022
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
A. Rakotomamonjy
Patrick Gallinari
AI4CE
25
49
0
29 Sep 2022
Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures
Zhilu Lai
Wei Liu
Xudong Jian
Kiran Bacsa
Limin Sun
Eleni Chatzi
AI4CE
26
22
0
16 Jul 2022
Variational Mixtures of ODEs for Inferring Cellular Gene Expression Dynamics
Yichen Gu
D. Blaauw
Joshua D. Welch
21
14
0
09 Jul 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
18
1
0
18 Apr 2022
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations
Paidamoyo Chapfuwa
Sherri Rose
Lawrence Carin
Edward Meeds
Ricardo Henao
CML
22
1
0
25 Feb 2022
Imbedding Deep Neural Networks
A. Corbett
D. Kangin
AI4TS
28
2
0
31 Jan 2022
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
38
56
0
10 Oct 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lio
36
90
0
12 Jun 2020
Stable Neural Flows
Stefano Massaroli
Michael Poli
Michelangelo Bin
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
46
31
0
18 Mar 2020
Stochasticity in Neural ODEs: An Empirical Study
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
BDL
30
20
0
22 Feb 2020
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
26
159
0
21 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
296
0
07 Feb 2020
Scalable Gradients for Stochastic Differential Equations
Xuechen Li
Ting-Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
17
310
0
05 Jan 2020
Graph Neural Ordinary Differential Equations
Michael Poli
Stefano Massaroli
Junyoung Park
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
51
154
0
18 Nov 2019
1