ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10761
  4. Cited By
ProbAct: A Probabilistic Activation Function for Deep Neural Networks

ProbAct: A Probabilistic Activation Function for Deep Neural Networks

26 May 2019
Kumar Shridhar
JoonHo Lee
Hideaki Hayashi
Purvanshi Mehta
Brian Kenji Iwana
Seokjun Kang
S. Uchida
Sheraz Ahmed
Andreas Dengel
    DiffM
    AAML
ArXivPDFHTML

Papers citing "ProbAct: A Probabilistic Activation Function for Deep Neural Networks"

26 / 26 papers shown
Title
A Comprehensive guide to Bayesian Convolutional Neural Network with
  Variational Inference
A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference
Kumar Shridhar
F. Laumann
Marcus Liwicki
BDL
UQCV
65
172
0
08 Jan 2019
The Quest for the Golden Activation Function
The Quest for the Golden Activation Function
Mina Basirat
P. Roth
41
53
0
02 Aug 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
61
180
0
29 May 2018
Towards Robust Neural Networks via Random Self-ensemble
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
88
419
0
02 Dec 2017
Searching for Activation Functions
Searching for Activation Functions
Prajit Ramachandran
Barret Zoph
Quoc V. Le
62
602
0
16 Oct 2017
Regularizing Deep Neural Networks by Noise: Its Interpretation and
  Optimization
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
61
198
0
14 Oct 2017
Kafnets: kernel-based non-parametric activation functions for neural
  networks
Kafnets: kernel-based non-parametric activation functions for neural networks
Simone Scardapane
S. Van Vaerenbergh
Simone Totaro
A. Uncini
31
12
0
13 Jul 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
334
2,496
0
08 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
323
4,667
0
15 Mar 2017
Activation Ensembles for Deep Neural Networks
Activation Ensembles for Deep Neural Networks
Mark Harmon
Diego Klabjan
137
35
0
24 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
615
5,748
0
05 Dec 2016
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Hao Wang
Xingjian Shi
Dit-Yan Yeung
BDL
62
83
0
02 Nov 2016
Parametric Exponential Linear Unit for Deep Convolutional Neural
  Networks
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
65
199
0
30 May 2016
Noisy Activation Functions
Noisy Activation Functions
Çağlar Gülçehre
Marcin Moczulski
Misha Denil
Yoshua Bengio
32
283
0
01 Mar 2016
Deep Learning with S-shaped Rectified Linear Activation Units
Deep Learning with S-shaped Rectified Linear Activation Units
Xiaojie Jin
Chunyan Xu
Jiashi Feng
Yunchao Wei
Junjun Xiong
Shuicheng Yan
276
217
0
22 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
259
5,502
0
23 Nov 2015
Adding Gradient Noise Improves Learning for Very Deep Networks
Adding Gradient Noise Improves Learning for Very Deep Networks
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Lukasz Kaiser
Karol Kurach
James Martens
AI4CE
ODL
62
544
0
21 Nov 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
154
1,878
0
20 May 2015
Empirical Evaluation of Rectified Activations in Convolutional Network
Empirical Evaluation of Rectified Activations in Convolutional Network
Bing Xu
Naiyan Wang
Tianqi Chen
Mu Li
127
2,901
0
05 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
96
940
0
18 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
246
18,534
0
06 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.2K
99,991
0
04 Sep 2014
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
204
16,311
0
30 Apr 2014
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
340
3,099
0
15 Aug 2013
Maxout Networks
Maxout Networks
Ian Goodfellow
David Warde-Farley
M. Berk Mirza
Aaron Courville
Yoshua Bengio
OOD
208
2,176
0
18 Feb 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
414
7,650
0
03 Jul 2012
1