ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10427
  4. Cited By
DIVA: Domain Invariant Variational Autoencoders

DIVA: Domain Invariant Variational Autoencoders

24 May 2019
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
    DRL
    OOD
ArXivPDFHTML

Papers citing "DIVA: Domain Invariant Variational Autoencoders"

21 / 121 papers shown
Title
Latent Causal Invariant Model
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
26
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Respecting Domain Relations: Hypothesis Invariance for Domain
  Generalization
Respecting Domain Relations: Hypothesis Invariance for Domain Generalization
Ziqi Wang
Marco Loog
Jan van Gemert
OOD
16
48
0
15 Oct 2020
Domain Shift in Computer Vision models for MRI data analysis: An
  Overview
Domain Shift in Computer Vision models for MRI data analysis: An Overview
E. Kondrateva
Marina Pominova
E. Popova
M. Sharaev
A. Bernstein
Evgeny Burnaev
OOD
8
34
0
14 Oct 2020
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for
  Causal Representation Learning
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning
Sumedh Anand Sontakke
Arash Mehrjou
Laurent Itti
Bernhard Schölkopf
CML
17
60
0
07 Oct 2020
Orientation-Disentangled Unsupervised Representation Learning for
  Computational Pathology
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Maxime W. Lafarge
J. Pluim
M. Veta
DRL
24
8
0
26 Aug 2020
Domain Generalizer: A Few-shot Meta Learning Framework for Domain
  Generalization in Medical Imaging
Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging
Pulkit Khandelwal
Paul Yushkevich
OOD
8
37
0
18 Aug 2020
Cross-study learning for generalist and specialist predictions
Cross-study learning for generalist and specialist predictions
Boyu Ren
Prasad Patil
Francesca Dominici
Giovanni Parmigiani
L. Trippa
22
10
0
24 Jul 2020
Domain Generalization via Optimal Transport with Metric Similarity
  Learning
Domain Generalization via Optimal Transport with Metric Similarity Learning
Fan Zhou
Zhuqing Jiang
Changjian Shui
Boyu Wang
B. Chaib-draa
OOD
27
53
0
21 Jul 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
26
1,112
0
02 Jul 2020
Capturing Label Characteristics in VAEs
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Philip Torr
N. Siddharth
Tom Rainforth
CML
DRL
30
43
0
17 Jun 2020
Domain Generalization using Causal Matching
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
19
325
0
12 Jun 2020
Selecting Data Augmentation for Simulating Interventions
Selecting Data Augmentation for Simulating Interventions
Maximilian Ilse
Jakub M. Tomczak
Patrick Forré
OOD
CML
23
18
0
04 May 2020
A Causal View on Robustness of Neural Networks
A Causal View on Robustness of Neural Networks
Cheng Zhang
Kun Zhang
Yingzhen Li
CML
OOD
23
85
0
03 May 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Z. Tu
DRL
CoGe
34
106
0
02 Apr 2020
Continuous Domain Adaptation with Variational Domain-Agnostic Feature
  Replay
Continuous Domain Adaptation with Variational Domain-Agnostic Feature Replay
Qicheng Lao
Xiang Jiang
Mohammad Havaei
Yoshua Bengio
VLM
23
33
0
09 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Learning Predictive Models From Observation and Interaction
Learning Predictive Models From Observation and Interaction
Karl Schmeckpeper
Annie Xie
Oleh Rybkin
Stephen Tian
Kostas Daniilidis
Sergey Levine
Chelsea Finn
DRL
33
60
0
30 Dec 2019
Learning Disentangled Representations via Mutual Information Estimation
Learning Disentangled Representations via Mutual Information Estimation
E. Sanchez
M. Serrurier
M. Ortner
SSL
DRL
22
95
0
09 Dec 2019
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Raza Habib
Soroosh Mariooryad
Matt Shannon
Eric Battenberg
RJ Skerry-Ryan
Daisy Stanton
David Kao
Tom Bagby
BDL
13
48
0
03 Oct 2019
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Andrei Atanov
Alexandra Volokhova
Arsenii Ashukha
Ivan Sosnovik
Dmitry Vetrov
BDL
21
41
0
01 May 2019
Previous
123