Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09747
Cited By
Adversarially Robust Distillation
23 May 2019
Micah Goldblum
Liam H. Fowl
Soheil Feizi
Tom Goldstein
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarially Robust Distillation"
35 / 35 papers shown
Title
Long-tailed Adversarial Training with Self-Distillation
Seungju Cho
Hongsin Lee
Changick Kim
AAML
TTA
415
0
0
09 Mar 2025
Adversarial Prompt Distillation for Vision-Language Models
Lin Luo
Xin Wang
Bojia Zi
Shihao Zhao
Xingjun Ma
Yu-Gang Jiang
AAML
VLM
116
3
0
22 Nov 2024
Is Adversarial Training with Compressed Datasets Effective?
Tong Chen
Raghavendra Selvan
AAML
109
0
0
08 Feb 2024
Adversarial attacks on Copyright Detection Systems
Parsa Saadatpanah
Ali Shafahi
Tom Goldstein
AAML
42
33
0
17 Jun 2019
Towards Compact and Robust Deep Neural Networks
Vikash Sehwag
Shiqi Wang
Prateek Mittal
Suman Jana
AAML
59
40
0
14 Jun 2019
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
Dinghuai Zhang
Tianyuan Zhang
Yiping Lu
Zhanxing Zhu
Bin Dong
AAML
96
361
0
02 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
125
1,245
0
29 Apr 2019
Defensive Quantization: When Efficiency Meets Robustness
Ji Lin
Chuang Gan
Song Han
MQ
69
203
0
17 Apr 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
Image Super-Resolution as a Defense Against Adversarial Attacks
Aamir Mustafa
Salman H. Khan
Munawar Hayat
Jianbing Shen
Ling Shao
AAML
SupR
67
175
0
07 Jan 2019
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
102
908
0
09 Dec 2018
Knowledge Distillation with Feature Maps for Image Classification
Wei-Chun Chen
Chia-Che Chang
Chien-Yu Lu
Che-Rung Lee
51
35
0
03 Dec 2018
To compress or not to compress: Understanding the Interactions between Adversarial Attacks and Neural Network Compression
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
Ross J. Anderson
AAML
36
43
0
29 Sep 2018
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
118
1,771
0
24 May 2018
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
95
628
0
16 Mar 2018
Deflecting Adversarial Attacks with Pixel Deflection
Aaditya (Adi) Prakash
N. Moran
Solomon Garber
Antonella DiLillo
J. Storer
AAML
61
303
0
26 Jan 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
169
19,204
0
13 Jan 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
275
12,029
0
19 Jun 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
143
2,732
0
13 Apr 2017
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
188
3,693
0
31 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
235
8,548
0
16 Aug 2016
Learning a Driving Simulator
Eder Santana
George Hotz
GAN
69
226
0
03 Aug 2016
A study of the effect of JPG compression on adversarial images
Gintare Karolina Dziugaite
Zoubin Ghahramani
Daniel M. Roy
AAML
81
533
0
02 Aug 2016
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
56
338
0
14 Jul 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
318
7,971
0
23 May 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
175
1,349
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.0K
193,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
768
27,303
0
02 Dec 2015
Convolutional neural networks with low-rank regularization
Cheng Tai
Tong Xiao
Yi Zhang
Xiaogang Wang
E. Weinan
BDL
97
460
0
19 Nov 2015
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
Uri Shaham
Yutaro Yamada
S. Negahban
AAML
48
77
0
17 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
129
4,886
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
76
3,072
0
14 Nov 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
316
19,609
0
09 Mar 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
239
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
245
14,893
1
21 Dec 2013
1