Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09638
Cited By
Estimating Risk and Uncertainty in Deep Reinforcement Learning
23 May 2019
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Estimating Risk and Uncertainty in Deep Reinforcement Learning"
25 / 25 papers shown
Title
Disentangling Uncertainty for Safe Social Navigation using Deep Reinforcement Learning
Daniel Flögel
Marcos Gómez Villafane
Joshua Ransiek
Sören Hohmann
28
0
0
16 Sep 2024
Uncertainty-aware transfer across tasks using hybrid model-based successor feature reinforcement learning
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
51
1
0
16 Oct 2023
Stochastic Implicit Neural Signed Distance Functions for Safe Motion Planning under Sensing Uncertainty
Carlos Quintero-Peña
Wil Thomason
Bo Xiong
Anastasios Kyrillidis
Lydia E. Kavraki
18
7
0
28 Sep 2023
Diverse Projection Ensembles for Distributional Reinforcement Learning
Moritz A. Zanger
Wendelin Bohmer
M. Spaan
25
4
0
12 Jun 2023
Distributional constrained reinforcement learning for supply chain optimization
J. Berm\údez
Antonio del Rio-Chanona
Calvin Tsay
26
5
0
03 Feb 2023
Anti-Exploration by Random Network Distillation
Alexander Nikulin
Vladislav Kurenkov
Denis Tarasov
Sergey Kolesnikov
38
24
0
31 Jan 2023
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
18
6
0
21 Jul 2022
Safer Autonomous Driving in a Stochastic, Partially-Observable Environment by Hierarchical Contingency Planning
Ugo Lecerf
Christelle Yemdji Tchassi
Pietro Michiardi
30
1
0
13 Apr 2022
Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios
Ugo Lecerf
Christelle Yemdji Tchassi
S. Aubert
Pietro Michiardi
24
0
0
11 Apr 2022
Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered Environments with Distributional Reinforcement Learning
Cheng Liu
E. Kampen
Guido de Croon
34
16
0
28 Mar 2022
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Vincent Mai
Kaustubh Mani
Liam Paull
36
34
0
05 Jan 2022
Learning to Be Cautious
Montaser Mohammedalamen
Dustin Morrill
Alexander Sieusahai
Yash Satsangi
Michael Bowling
18
3
0
29 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
81
0
26 Oct 2021
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
Moitreya Chatterjee
Narendra Ahuja
A. Cherian
UQCV
VGen
BDL
42
17
0
06 Oct 2021
A study of first-passage time minimization via Q-learning in heated gridworlds
M. A. Larchenko
Pavel Osinenko
Grigory Yaremenko
V. V. Palyulin
26
4
0
05 Oct 2021
Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble
Gaon An
Seungyong Moon
Jang-Hyun Kim
Hyun Oh Song
OffRL
105
262
0
04 Oct 2021
Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition
Paul Festor
Giulia Luise
Matthieu Komorowski
A. Faisal
UD
OffRL
20
10
0
16 Sep 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
36
93
0
14 Sep 2021
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Yue Wu
Shuangfei Zhai
Nitish Srivastava
J. Susskind
Jian Zhang
Ruslan Salakhutdinov
Hanlin Goh
EDL
OffRL
OnRL
21
184
0
17 May 2021
Safe Chance Constrained Reinforcement Learning for Batch Process Control
M. Mowbray
Panagiotis Petsagkourakis
Ehecatl Antonio del Rio Chanona
Dongda Zhang
OffRL
34
34
0
23 Apr 2021
Risk-Averse Bayes-Adaptive Reinforcement Learning
Marc Rigter
Bruno Lacerda
Nick Hawes
27
41
0
10 Feb 2021
Should artificial agents ask for help in human-robot collaborative problem-solving?
Adrien Bennetot
V. Charisi
Natalia Díaz Rodríguez
21
8
0
25 May 2020
Application of Deep Q-Network in Portfolio Management
Ziming Gao
Yuan Gao
Y. Hu
Zhengyong Jiang
Jionglong Su
AIFin
11
49
0
13 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1