ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08598
  4. Cited By
SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular
  Depth Estimation

SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular Depth Estimation

21 May 2019
Michael Ramamonjisoa
Vincent Lepetit
    MDE
    3DH
ArXivPDFHTML

Papers citing "SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular Depth Estimation"

24 / 24 papers shown
Title
Occlusion Boundary and Depth: Mutual Enhancement via Multi-Task Learning
Occlusion Boundary and Depth: Mutual Enhancement via Multi-Task Learning
Lintao Xu
Yinghao Wang
Chaohui Wang
MDE
132
0
0
27 May 2025
Survey on Monocular Metric Depth Estimation
Survey on Monocular Metric Depth Estimation
Jiuling Zhang
VLM
138
0
0
21 Jan 2025
Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
Jinchang Zhang
Ningning Xu
Hao Zhang
Guoyu Lu
MDE
56
0
0
18 Sep 2024
Learning monocular depth estimation with unsupervised trinocular
  assumptions
Learning monocular depth estimation with unsupervised trinocular assumptions
Matteo Poggi
Fabio Tosi
S. Mattoccia
MDE
41
152
0
05 Aug 2018
Geo-Supervised Visual Depth Prediction
Geo-Supervised Visual Depth Prediction
Xiaohan Fei
A. Wong
Stefano Soatto
MDE
41
74
0
30 Jul 2018
DOOBNet: Deep Object Occlusion Boundary Detection from an Image
DOOBNet: Deep Object Occlusion Boundary Detection from an Image
Guoxia Wang
Xiaohui Liang
Frederick W. B. Li
39
31
0
11 Jun 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
276
1,718
0
06 Jun 2018
Monocular Depth Estimation with Augmented Ordinal Depth Relationships
Monocular Depth Estimation with Augmented Ordinal Depth Relationships
Yuanzhouhan Cao
Tianqi Zhao
Ke Xian
Chunhua Shen
Zhiguo Cao
Shugong Xu
MDE
98
49
0
02 Jun 2018
Evaluation of CNN-based Single-Image Depth Estimation Methods
Evaluation of CNN-based Single-Image Depth Estimation Methods
Tobias Koch
Lukas Liebel
Friedrich Fraundorfer
Marco Körner
3DV
110
148
0
03 May 2018
Deep Depth Completion of a Single RGB-D Image
Deep Depth Completion of a Single RGB-D Image
Yinda Zhang
Thomas Funkhouser
3DV
MDE
108
397
0
25 Mar 2018
LEGO: Learning Edge with Geometry all at Once by Watching Videos
LEGO: Learning Edge with Geometry all at Once by Watching Videos
Zhenheng Yang
Peng Wang
Yang Wang
Wenyuan Xu
Ram Nevatia
3DPC
SSL
46
189
0
15 Mar 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
32
1,136
0
06 Mar 2018
Matterport3D: Learning from RGB-D Data in Indoor Environments
Matterport3D: Learning from RGB-D Data in Indoor Environments
Angel X. Chang
Angela Dai
Thomas Funkhouser
Maciej Halber
Matthias Nießner
Manolis Savva
Shuran Song
Andy Zeng
Yinda Zhang
3DV
3DPC
114
1,880
0
18 Sep 2017
Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular
  Depth Estimation
Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation
Dan Xu
Elisa Ricci
Wanli Ouyang
Xiaogang Wang
N. Sebe
43
416
0
07 Apr 2017
Physically-Based Rendering for Indoor Scene Understanding Using
  Convolutional Neural Networks
Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks
Yinda Zhang
Shuran Song
Ersin Yumer
Manolis Savva
Joon-Young Lee
Hailin Jin
Thomas Funkhouser
AI4CE
SSL
3DV
3DPC
35
260
0
22 Dec 2016
Unsupervised Monocular Depth Estimation with Left-Right Consistency
Unsupervised Monocular Depth Estimation with Left-Right Consistency
Clément Godard
Oisin Mac Aodha
Gabriel J. Brostow
MDE
104
2,875
0
13 Sep 2016
Deeper Depth Prediction with Fully Convolutional Residual Networks
Deeper Depth Prediction with Fully Convolutional Residual Networks
Iro Laina
Christian Rupprecht
Vasileios Belagiannis
Federico Tombari
Nassir Navab
3DV
MDE
215
1,823
0
01 Jun 2016
Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep
  Convolutional Neural Networks
Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks
Junyuan Xie
Ross B. Girshick
Ali Farhadi
3DH
60
427
0
13 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.2K
76,547
0
18 May 2015
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLM
MDE
138
2,674
0
18 Nov 2014
Fast Edge Detection Using Structured Forests
Fast Edge Detection Using Structured Forests
Piotr Dollár
C. L. Zitnick
56
931
0
20 Jun 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE
3DPC
3DV
157
4,041
0
09 Jun 2014
The BerHu penalty and the grouped effect
The BerHu penalty and the grouped effect
Laurent Zwald
S. Lambert-Lacroix
104
86
0
30 Jul 2012
1