Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.08539
Cited By
Universal Approximation with Deep Narrow Networks
21 May 2019
Patrick Kidger
Terry Lyons
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal Approximation with Deep Narrow Networks"
50 / 62 papers shown
Title
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
14
0
0
15 May 2025
Extended Fiducial Inference for Individual Treatment Effects via Deep Neural Networks
Sehwan Kim
F. Liang
FedML
57
0
0
04 May 2025
Looped ReLU MLPs May Be All You Need as Practical Programmable Computers
Yingyu Liang
Zhizhou Sha
Zhenmei Shi
Zhao Song
Yufa Zhou
101
18
0
21 Feb 2025
Kolmogorov-Arnold Fourier Networks
Jusheng Zhang
Yijia Fan
Kaitong Cai
Keze Wang
68
0
0
09 Feb 2025
Keep It Light! Simplifying Image Clustering Via Text-Free Adapters
Yicen Li
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Paul D. McNicholas
VLM
98
0
0
06 Feb 2025
Learnable polynomial, trigonometric, and tropical activations
Ismail Khalfaoui-Hassani
Stefan Kesselheim
64
0
0
03 Feb 2025
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
163
3
0
14 Oct 2024
Generalizable autoregressive modeling of time series through functional narratives
Ran Liu
Wenrui Ma
Ellen L. Zippi
Hadi Pouransari
Jingyun Xiao
...
Behrooz Mahasseni
Juri Minxha
Erdrin Azemi
Eva L. Dyer
Ali Moin
AI4TS
35
1
0
10 Oct 2024
Neural networks in non-metric spaces
Luca Galimberti
56
1
0
13 Jun 2024
Extremization to Fine Tune Physics Informed Neural Networks for Solving Boundary Value Problems
A. Thiruthummal
Sergiy Shelyag
Eun-Jin Kim
33
2
0
07 Jun 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
35
4
0
04 Apr 2024
A Non-monotonic Smooth Activation Function
Koushik Biswas
Meghana Karri
Ulacs Baugci
16
1
0
16 Oct 2023
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
49
2
0
02 Oct 2023
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
Lukas Gonon
A. Jacquier
19
13
0
24 Jul 2023
Universal Approximation and the Topological Neural Network
M. Kouritzin
Daniel Richard
23
0
0
26 May 2023
Consistent Optimal Transport with Empirical Conditional Measures
Piyushi Manupriya
Rachit Keerti Das
Sayantan Biswas
S. Jagarlapudi
OT
37
3
0
25 May 2023
DeepBern-Nets: Taming the Complexity of Certifying Neural Networks using Bernstein Polynomial Activations and Precise Bound Propagation
Haitham Khedr
Yasser Shoukry
47
5
0
22 May 2023
Hedonic Prices and Quality Adjusted Price Indices Powered by AI
Patrick Bajari
Zhihao Cen
Victor Chernozhukov
Manoj Manukonda
Suhas Vijaykumar
...
Ramon Huerta
Junbo Li
Ling Leng
George Monokroussos
Shan Wan
25
13
0
28 Apr 2023
Graph Neural Network Surrogates of Fair Graph Filtering
Emmanouil Krasanakis
Symeon Papadopoulos
32
1
0
14 Mar 2023
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations
H. Michaeli
T. Michaeli
Daniel Soudry
21
14
0
14 Mar 2023
On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters
Wonyeol Lee
Sejun Park
A. Aiken
PINN
21
6
0
31 Jan 2023
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
33
1
0
12 Jan 2023
Deep Learning and Computational Physics (Lecture Notes)
Deep Ray
Orazio Pinti
Assad A. Oberai
PINN
AI4CE
27
7
0
03 Jan 2023
Selected aspects of complex, hypercomplex and fuzzy neural networks
A. Niemczynowicz
R. Kycia
Maciej Jaworski
A. Siemaszko
J. Calabuig
...
Baruch Schneider
Diana Berseghyan
Irina Perfiljeva
V. Novák
Piotr Artiemjew
27
0
0
29 Dec 2022
An Introduction to Kernel and Operator Learning Methods for Homogenization by Self-consistent Clustering Analysis
Owen Huang
Sourav Saha
Jiachen Guo
Wing Kam Liu
AI4CE
20
12
0
01 Dec 2022
LU decomposition and Toeplitz decomposition of a neural network
Yucong Liu
Simiao Jiao
Lek-Heng Lim
30
7
0
25 Nov 2022
Minimal Width for Universal Property of Deep RNN
Changhoon Song
Geonho Hwang
Jun ho Lee
Myung-joo Kang
23
9
0
25 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
29
3
0
01 Nov 2022
On the Approximation and Complexity of Deep Neural Networks to Invariant Functions
Gao Zhang
Jin-Hui Wu
Shao-Qun Zhang
16
0
0
27 Oct 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
Deep learning extraction of band structure parameters from density of states: a case study on trilayer graphene
Paul Henderson
A. Ghazaryan
A. Zibrov
A. Young
Maksym Serbyn
16
3
0
12 Oct 2022
The (Un)Scalability of Heuristic Approximators for NP-Hard Search Problems
Sumedh Pendurkar
Taoan Huang
Sven Koenig
Guni Sharon
28
1
0
07 Sep 2022
A general approximation lower bound in
L
p
L^p
L
p
norm, with applications to feed-forward neural networks
E. M. Achour
Armand Foucault
Sébastien Gerchinovitz
Franccois Malgouyres
32
7
0
09 Jun 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
52
20
0
31 Jan 2022
A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations
A. Benfenati
A. Marta
51
11
0
17 Dec 2021
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Physics-enhanced deep surrogates for partial differential equations
R. Pestourie
Youssef Mroueh
Chris Rackauckas
Payel Das
Steven G. Johnson
PINN
AI4CE
25
15
0
10 Nov 2021
SMU: smooth activation function for deep networks using smoothing maximum technique
Koushik Biswas
Sandeep Kumar
Shilpak Banerjee
A. Pandey
30
32
0
08 Nov 2021
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks with Probabilities over Representations
Louis Fortier-Dubois
Gaël Letarte
Benjamin Leblanc
Franccois Laviolette
Pascal Germain
UQCV
17
0
0
28 Oct 2021
Fourier Neural Networks for Function Approximation
R. Subhash
K. Yaswanth
28
1
0
21 Oct 2021
SAU: Smooth activation function using convolution with approximate identities
Koushik Biswas
Sandeep Kumar
Shilpak Banerjee
A. Pandey
24
6
0
27 Sep 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
59
8
0
23 Sep 2021
ErfAct and Pserf: Non-monotonic Smooth Trainable Activation Functions
Koushik Biswas
Sandeep Kumar
Shilpak Banerjee
A. Pandey
51
13
0
09 Sep 2021
Reward-Based 1-bit Compressed Federated Distillation on Blockchain
Leon Witt
Usama Zafar
KuoYeh Shen
Felix Sattler
Dan Li
Wojciech Samek
FedML
35
4
0
27 Jun 2021
Encoding Involutory Invariances in Neural Networks
Anwesh Bhattacharya
M. Mattheakis
P. Protopapas
33
1
0
07 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
1
2
Next