ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.03393
26
1

The (Un)Scalability of Heuristic Approximators for NP-Hard Search Problems

7 September 2022
Sumedh Pendurkar
Taoan Huang
Sven Koenig
Guni Sharon
ArXivPDFHTML
Abstract

The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with a completely informed heuristic function, A* solves many NP-hard minimum-cost path problems in time polynomial in the branching factor and the number of edges in a minimum-cost path. Thus, approximating their completely informed heuristic functions with high precision is NP-hard. We therefore examine recent publications that propose the use of neural networks for this purpose. We support our claim that these approaches do not scale to large instance sizes both theoretically and experimentally. Our first experimental results for three representative NP-hard minimum-cost path problems suggest that using neural networks to approximate completely informed heuristic functions with high precision might result in network sizes that scale exponentially in the instance sizes. The research community might thus benefit from investigating other ways of integrating heuristic search with machine learning.

View on arXiv
Comments on this paper