ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07697
  4. Cited By
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations

Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations

19 May 2019
R. Mothilal
Amit Sharma
Chenhao Tan
    CML
ArXivPDFHTML

Papers citing "Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations"

27 / 177 papers shown
Title
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Intuitively Assessing ML Model Reliability through Example-Based
  Explanations and Editing Model Inputs
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
40
25
0
17 Feb 2021
Towards Designing Computer Vision-based Explainable-AI Solution: A Use
  Case of Livestock Mart Industry
Towards Designing Computer Vision-based Explainable-AI Solution: A Use Case of Livestock Mart Industry
Devam Dave
Het Naik
Smiti Singhal
Rudresh Dwivedi
Pankesh Patel
20
1
0
08 Feb 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
65
100
0
11 Jan 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
46
61
0
05 Jan 2021
FastIF: Scalable Influence Functions for Efficient Model Interpretation
  and Debugging
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo
Nazneen Rajani
Peter Hase
Joey Tianyi Zhou
Caiming Xiong
TDI
41
102
0
31 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
20
397
0
19 Oct 2020
A Series of Unfortunate Counterfactual Events: the Role of Time in
  Counterfactual Explanations
A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations
Andrea Ferrario
M. Loi
25
5
0
09 Oct 2020
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
19
89
0
28 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
38
62
0
11 Sep 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
30
51
0
03 Sep 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
Learning Global Transparent Models Consistent with Local Contrastive
  Explanations
Learning Global Transparent Models Consistent with Local Contrastive Explanations
Tejaswini Pedapati
Avinash Balakrishnan
Karthikeyan Shanmugam
Amit Dhurandhar
FAtt
22
0
0
19 Feb 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
27
58
0
11 Feb 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials
  for Humans
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
35
138
0
14 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
22
206
0
06 Dec 2019
Explaining Visual Models by Causal Attribution
Explaining Visual Models by Causal Attribution
Álvaro Parafita
Jordi Vitrià
CML
FAtt
62
35
0
19 Sep 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
378
0
03 Jul 2019
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
162
1,123
0
25 Jul 2012
Previous
1234