Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.07697
Cited By
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
19 May 2019
R. Mothilal
Amit Sharma
Chenhao Tan
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations"
50 / 177 papers shown
Title
Outcome-Guided Counterfactuals for Reinforcement Learning Agents from a Jointly Trained Generative Latent Space
Eric Yeh
Pedro Sequeira
Jesse Hostetler
Melinda Gervasio
OOD
CML
BDL
OffRL
19
2
0
15 Jul 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Kaser
FAtt
ELM
11
39
0
01 Jul 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
22
24
0
05 Jun 2022
PROMISSING: Pruning Missing Values in Neural Networks
S. M. Kia
N. M. Rad
Dan Opstal
B. V. Schie
A. Marquand
J. Pluim
W. Cahn
H. Schnack
VLM
29
4
0
03 Jun 2022
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
44
18
0
31 May 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
S. Hoi
CML
35
13
0
31 May 2022
Causal Explanations for Sequential Decision Making Under Uncertainty
Samer B. Nashed
Saaduddin Mahmud
C. V. Goldman
S. Zilberstein
CML
43
4
0
30 May 2022
Justifying Social-Choice Mechanism Outcome for Improving Participant Satisfaction
Sharadhi Alape Suryanarayana
David Sarne
Bar-Ilan
19
7
0
24 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
30
26
0
16 May 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
22
1
0
16 May 2022
An Explainable Regression Framework for Predicting Remaining Useful Life of Machines
Talhat Khan
Kashif Ahmad
Jebran Khan
Imran Khan
Nasir Ahmad
43
13
0
28 Apr 2022
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
27
22
0
21 Apr 2022
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
32
55
0
29 Mar 2022
On the Computation of Necessary and Sufficient Explanations
Adnan Darwiche
Chunxi Ji
FAtt
13
19
0
20 Mar 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
24
38
0
13 Mar 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
24
51
0
07 Feb 2022
Analogies and Feature Attributions for Model Agnostic Explanation of Similarity Learners
K. Ramamurthy
Amit Dhurandhar
Dennis L. Wei
Zaid Bin Tariq
FAtt
38
3
0
02 Feb 2022
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
62
24
0
29 Jan 2022
Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial Contexts
Sebastian Bordt
Michèle Finck
Eric Raidl
U. V. Luxburg
AILaw
39
77
0
25 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis
Giovanni De Toni
Bruno Lepri
Andrea Passerini
CML
30
13
0
18 Jan 2022
Interpretable Low-Resource Legal Decision Making
R. Bhambhoria
Hui Liu
Samuel Dahan
Xiao-Dan Zhu
ELM
AILaw
27
9
0
01 Jan 2022
Towards a Shapley Value Graph Framework for Medical peer-influence
J. Duell
M. Seisenberger
Gert Aarts
Shang-Ming Zhou
Xiuyi Fan
16
0
0
29 Dec 2021
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
25
62
0
28 Dec 2021
Prolog-based agnostic explanation module for structured pattern classification
Gonzalo Nápoles
Fabian Hoitsma
A. Knoben
A. Jastrzębska
Maikel Leon Espinosa
17
13
0
23 Dec 2021
Post-discovery Analysis of Anomalous Subsets
I. Mulang'
William Ogallo
G. Tadesse
Aisha Walcott-Bryant
29
1
0
23 Nov 2021
A Practical guide on Explainable AI Techniques applied on Biomedical use case applications
Adrien Bennetot
Ivan Donadello
Ayoub El Qadi
M. Dragoni
Thomas Frossard
...
M. Trocan
Raja Chatila
Andreas Holzinger
Artur Garcez
Natalia Díaz Rodríguez
XAI
32
7
0
13 Nov 2021
Solving the Class Imbalance Problem Using a Counterfactual Method for Data Augmentation
M. Temraz
Markt. Keane
21
42
0
05 Nov 2021
Data Synthesis for Testing Black-Box Machine Learning Models
Diptikalyan Saha
Aniya Aggarwal
Sandeep Hans
17
4
0
03 Nov 2021
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
26
49
0
27 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
36
647
0
05 Oct 2021
Discriminative Attribution from Counterfactuals
N. Eckstein
A. S. Bates
G. Jefferis
Jan Funke
FAtt
CML
27
1
0
28 Sep 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
46
5
0
15 Sep 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Counterfactual Evaluation for Explainable AI
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
CML
38
13
0
05 Sep 2021
Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond
Amir Feder
Katherine A. Keith
Emaad A. Manzoor
Reid Pryzant
Dhanya Sridhar
...
Roi Reichart
Margaret E. Roberts
Brandon M Stewart
Victor Veitch
Diyi Yang
CML
41
234
0
02 Sep 2021
Feature Recommendation for Structural Equation Model Discovery in Process Mining
Mahnaz Sadat Qafari
Wil M.P. van der Aalst
17
7
0
13 Aug 2021
Improving Visualization Interpretation Using Counterfactuals
Smiti Kaul
D. Borland
Nan Cao
David Gotz
CML
10
17
0
21 Jul 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
37
33
0
09 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
Rational Shapley Values
David S. Watson
23
20
0
18 Jun 2021
Optimal Counterfactual Explanations in Tree Ensembles
Axel Parmentier
Thibaut Vidal
19
54
0
11 Jun 2021
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Peter Hase
Harry Xie
Joey Tianyi Zhou
OODD
LRM
FAtt
18
91
0
01 Jun 2021
A unified logical framework for explanations in classifier systems
Xinghan Liu
E. Lorini
15
12
0
30 May 2021
Counterfactual Explanations for Neural Recommenders
Khanh Tran
Azin Ghazimatin
Rishiraj Saha Roy
AAML
CML
54
65
0
11 May 2021
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
45
152
0
27 Apr 2021
Optimal Counterfactual Explanations for Scorecard modelling
Guillermo Navas-Palencia
11
9
0
17 Apr 2021
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
17
24
0
12 Apr 2021
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
27
9
0
27 Mar 2021
Previous
1
2
3
4
Next