ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07645
  4. Cited By
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

18 May 2019
Hongteng Xu
Dixin Luo
Lawrence Carin
ArXivPDFHTML

Papers citing "Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching"

16 / 16 papers shown
Title
Spingarn's Method and Progressive Decoupling Beyond Elicitable Monotonicity
Spingarn's Method and Progressive Decoupling Beyond Elicitable Monotonicity
B. Evens
P. Latafat
Panagiotis Patrinos
139
1
0
01 Apr 2025
Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
Qingmei Wang
Fanmeng Wang
Bing Su
Hongteng Xu
AI4TS
83
0
0
29 Mar 2025
THESAURUS: Contrastive Graph Clustering by Swapping Fused Gromov-Wasserstein Couplings
THESAURUS: Contrastive Graph Clustering by Swapping Fused Gromov-Wasserstein Couplings
Bowen Deng
Tong Wang
Lele Fu
Sheng Huang
Chuan Chen
Tao Zhang
126
1
0
17 Feb 2025
Scalable Implicit Graphon Learning
Scalable Implicit Graphon Learning
Ali Azizpour
Nicolas Zilberstein
Santiago Segarra
GNN
119
0
0
22 Oct 2024
The Z-Gromov-Wasserstein Distance
The Z-Gromov-Wasserstein Distance
Martin Bauer
Facundo Mémoli
Tom Needham
Mao Nishino
OT
53
2
0
15 Aug 2024
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Qijie Ding
Jie Yin
Daokun Zhang
Junbin Gao
88
4
0
05 Jul 2023
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
48
112
0
14 May 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
64
256
0
17 Jan 2019
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
72
125
0
07 Nov 2018
Gromov-Wasserstein Alignment of Word Embedding Spaces
Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis
Tommi Jaakkola
OT
49
326
0
31 Aug 2018
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
55
270
0
23 May 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
140
2,133
0
01 Mar 2018
Near-linear time approximation algorithms for optimal transport via
  Sinkhorn iteration
Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Jason M. Altschuler
Jonathan Niles-Weed
Philippe Rigollet
OT
56
587
0
26 May 2017
node2vec: Scalable Feature Learning for Networks
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
156
10,825
0
03 Jul 2016
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
142
4,210
0
04 Jun 2013
Point-Set Registration: Coherent Point Drift
Point-Set Registration: Coherent Point Drift
Andriy Myronenko
Xubo B. Song
3DPC
3DV
112
2,577
0
15 May 2009
1