Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.03375
Cited By
Embarrassingly Shallow Autoencoders for Sparse Data
8 May 2019
Harald Steck
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Embarrassingly Shallow Autoencoders for Sparse Data"
29 / 29 papers shown
Title
Graph Spectral Filtering with Chebyshev Interpolation for Recommendation
Chanwoo Kim
Jinkyu Sung
Yebonn Han
Joonseok Lee
GNN
47
0
0
01 May 2025
A Comparative Study of Recommender Systems under Big Data Constraints
Arimondo Scrivano
30
0
0
11 Apr 2025
Why is Normalization Necessary for Linear Recommenders?
Seongmin Park
Mincheol Yoon
Hye-young Kim
Jongwuk Lee
35
0
0
08 Apr 2025
Shallow AutoEncoding Recommender with Cold Start Handling via Side Features
Edward DongBo Cui
Lu Zhang
William Ping-hsun Lee
41
0
0
03 Apr 2025
Extending MovieLens-32M to Provide New Evaluation Objectives
Mark D. Smucker
Houmaan Chamani
33
0
0
02 Apr 2025
Weighted Tensor Decompositions for Context-aware Collaborative Filtering
Joey De Pauw
Bart Goethals
60
0
0
11 Mar 2025
Enhancing Collaborative Filtering-Based Course Recommendations by Exploiting Time-to-Event Information with Survival Analysis
Alireza Gharahighehi
Achilleas Ghinis
Michela Venturini
Frederik Cornillie
C. Vens
45
0
0
27 Feb 2025
Evaluating ChatGPT as a Recommender System: A Rigorous Approach
Dario Di Palma
Giovanni Maria Biancofiore
Vito Walter Anelli
Fedelucio Narducci
Tommaso Di Noia
E. Sciascio
ALM
46
27
0
07 Sep 2023
Distributional Off-Policy Evaluation for Slate Recommendations
Shreyas Chaudhari
David Arbour
Georgios Theocharous
N. Vlassis
OffRL
44
0
0
27 Aug 2023
Bridging Offline-Online Evaluation with a Time-dependent and Popularity Bias-free Offline Metric for Recommenders
Petr Kasalický
Rodrigo Alves
Pavel Kordík
OffRL
23
0
0
14 Aug 2023
Toward a Better Understanding of Loss Functions for Collaborative Filtering
Seongmin Park
Mincheol Yoon
Jae-woong Lee
Hogun Park
Jongwuk Lee
34
14
0
11 Aug 2023
On (Normalised) Discounted Cumulative Gain as an Off-Policy Evaluation Metric for Top-
n
n
n
Recommendation
Olivier Jeunen
Ivan Potapov
Aleksei Ustimenko
ELM
OffRL
27
11
0
27 Jul 2023
Adap-
τ
τ
τ
: Adaptively Modulating Embedding Magnitude for Recommendation
Jiawei Chen
Junkang Wu
Jiancan Wu
Sheng Zhou
Xuezhi Cao
Xiangnan He
38
30
0
09 Feb 2023
Recommender Systems: A Primer
P. Castells
Dietmar Jannach
OffRL
32
5
0
06 Feb 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Generalization Bounds for Inductive Matrix Completion in Low-noise Settings
Antoine Ledent
Rodrigo Alves
Yunwen Lei
Y. Guermeur
Marius Kloft
23
3
0
16 Dec 2022
Towards Reliable Item Sampling for Recommendation Evaluation
Dong Li
Ruoming Jin
Zhenming Liu
Bin Ren
Jing Gao
Zhi Liu
22
9
0
28 Nov 2022
Blurring-Sharpening Process Models for Collaborative Filtering
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
17
40
0
17 Nov 2022
Multi-Objective Recommender Systems: Survey and Challenges
Dietmar Jannach
24
13
0
19 Oct 2022
On the Generalizability and Predictability of Recommender Systems
Duncan C. McElfresh
Sujay Khandagale
Jonathan Valverde
John P. Dickerson
Colin White
41
10
0
23 Jun 2022
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
33
28
0
03 Jun 2022
iALS++: Speeding up Matrix Factorization with Subspace Optimization
Steffen Rendle
Walid Krichene
Li Zhang
Y. Koren
16
9
0
26 Oct 2021
On the Regularization of Autoencoders
Harald Steck
Dario Garcia-Garcia
SSL
AI4CE
30
4
0
21 Oct 2021
SimpleX: A Simple and Strong Baseline for Collaborative Filtering
Kelong Mao
Jieming Zhu
Jinpeng Wang
Quanyu Dai
Zhenhua Dong
Xi Xiao
Xiuqiang He
18
159
0
26 Sep 2021
Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems
A. Nikolakopoulos
Xia Ning
Christian Desrosiers
George Karypis
OffRL
54
29
0
09 Sep 2021
How Powerful is Graph Convolution for Recommendation?
Yifei Shen
Yongji Wu
Yao Zhang
Caihua Shan
Jun Zhang
Khaled B. Letaief
Dongsheng Li
GNN
33
100
0
17 Aug 2021
Reenvisioning Collaborative Filtering vs Matrix Factorization
Vito Walter Anelli
Alejandro Bellogín
Tommaso Di Noia
Claudio Pomo
16
26
0
28 Jul 2021
RecVAE: a New Variational Autoencoder for Top-N Recommendations with Implicit Feedback
Ilya Shenbin
Anton M. Alekseev
E. Tutubalina
Valentin Malykh
Sergey I. Nikolenko
BDL
DRL
18
196
0
24 Dec 2019
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research
Maurizio Ferrari Dacrema
Simone Boglio
Paolo Cremonesi
Dietmar Jannach
15
196
0
18 Nov 2019
1