ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03375
  4. Cited By
Embarrassingly Shallow Autoencoders for Sparse Data

Embarrassingly Shallow Autoencoders for Sparse Data

8 May 2019
Harald Steck
ArXivPDFHTML

Papers citing "Embarrassingly Shallow Autoencoders for Sparse Data"

29 / 29 papers shown
Title
Graph Spectral Filtering with Chebyshev Interpolation for Recommendation
Graph Spectral Filtering with Chebyshev Interpolation for Recommendation
Chanwoo Kim
Jinkyu Sung
Yebonn Han
Joonseok Lee
GNN
47
0
0
01 May 2025
A Comparative Study of Recommender Systems under Big Data Constraints
A Comparative Study of Recommender Systems under Big Data Constraints
Arimondo Scrivano
30
0
0
11 Apr 2025
Why is Normalization Necessary for Linear Recommenders?
Why is Normalization Necessary for Linear Recommenders?
Seongmin Park
Mincheol Yoon
Hye-young Kim
Jongwuk Lee
35
0
0
08 Apr 2025
Shallow AutoEncoding Recommender with Cold Start Handling via Side Features
Shallow AutoEncoding Recommender with Cold Start Handling via Side Features
Edward DongBo Cui
Lu Zhang
William Ping-hsun Lee
41
0
0
03 Apr 2025
Extending MovieLens-32M to Provide New Evaluation Objectives
Extending MovieLens-32M to Provide New Evaluation Objectives
Mark D. Smucker
Houmaan Chamani
33
0
0
02 Apr 2025
Weighted Tensor Decompositions for Context-aware Collaborative Filtering
Weighted Tensor Decompositions for Context-aware Collaborative Filtering
Joey De Pauw
Bart Goethals
60
0
0
11 Mar 2025
Enhancing Collaborative Filtering-Based Course Recommendations by Exploiting Time-to-Event Information with Survival Analysis
Alireza Gharahighehi
Achilleas Ghinis
Michela Venturini
Frederik Cornillie
C. Vens
45
0
0
27 Feb 2025
Evaluating ChatGPT as a Recommender System: A Rigorous Approach
Evaluating ChatGPT as a Recommender System: A Rigorous Approach
Dario Di Palma
Giovanni Maria Biancofiore
Vito Walter Anelli
Fedelucio Narducci
Tommaso Di Noia
E. Sciascio
ALM
46
27
0
07 Sep 2023
Distributional Off-Policy Evaluation for Slate Recommendations
Distributional Off-Policy Evaluation for Slate Recommendations
Shreyas Chaudhari
David Arbour
Georgios Theocharous
N. Vlassis
OffRL
44
0
0
27 Aug 2023
Bridging Offline-Online Evaluation with a Time-dependent and Popularity
  Bias-free Offline Metric for Recommenders
Bridging Offline-Online Evaluation with a Time-dependent and Popularity Bias-free Offline Metric for Recommenders
Petr Kasalický
Rodrigo Alves
Pavel Kordík
OffRL
23
0
0
14 Aug 2023
Toward a Better Understanding of Loss Functions for Collaborative
  Filtering
Toward a Better Understanding of Loss Functions for Collaborative Filtering
Seongmin Park
Mincheol Yoon
Jae-woong Lee
Hogun Park
Jongwuk Lee
34
14
0
11 Aug 2023
On (Normalised) Discounted Cumulative Gain as an Off-Policy Evaluation
  Metric for Top-$n$ Recommendation
On (Normalised) Discounted Cumulative Gain as an Off-Policy Evaluation Metric for Top-nnn Recommendation
Olivier Jeunen
Ivan Potapov
Aleksei Ustimenko
ELM
OffRL
27
11
0
27 Jul 2023
Adap-$τ$: Adaptively Modulating Embedding Magnitude for
  Recommendation
Adap-τττ: Adaptively Modulating Embedding Magnitude for Recommendation
Jiawei Chen
Junkang Wu
Jiancan Wu
Sheng Zhou
Xuezhi Cao
Xiangnan He
38
30
0
09 Feb 2023
Recommender Systems: A Primer
Recommender Systems: A Primer
P. Castells
Dietmar Jannach
OffRL
32
5
0
06 Feb 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Generalization Bounds for Inductive Matrix Completion in Low-noise
  Settings
Generalization Bounds for Inductive Matrix Completion in Low-noise Settings
Antoine Ledent
Rodrigo Alves
Yunwen Lei
Y. Guermeur
Marius Kloft
23
3
0
16 Dec 2022
Towards Reliable Item Sampling for Recommendation Evaluation
Towards Reliable Item Sampling for Recommendation Evaluation
Dong Li
Ruoming Jin
Zhenming Liu
Bin Ren
Jing Gao
Zhi Liu
22
9
0
28 Nov 2022
Blurring-Sharpening Process Models for Collaborative Filtering
Blurring-Sharpening Process Models for Collaborative Filtering
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
17
40
0
17 Nov 2022
Multi-Objective Recommender Systems: Survey and Challenges
Multi-Objective Recommender Systems: Survey and Challenges
Dietmar Jannach
24
13
0
19 Oct 2022
On the Generalizability and Predictability of Recommender Systems
On the Generalizability and Predictability of Recommender Systems
Duncan C. McElfresh
Sujay Khandagale
Jonathan Valverde
John P. Dickerson
Colin White
41
10
0
23 Jun 2022
Infinite Recommendation Networks: A Data-Centric Approach
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
33
28
0
03 Jun 2022
iALS++: Speeding up Matrix Factorization with Subspace Optimization
iALS++: Speeding up Matrix Factorization with Subspace Optimization
Steffen Rendle
Walid Krichene
Li Zhang
Y. Koren
16
9
0
26 Oct 2021
On the Regularization of Autoencoders
On the Regularization of Autoencoders
Harald Steck
Dario Garcia-Garcia
SSL
AI4CE
30
4
0
21 Oct 2021
SimpleX: A Simple and Strong Baseline for Collaborative Filtering
SimpleX: A Simple and Strong Baseline for Collaborative Filtering
Kelong Mao
Jieming Zhu
Jinpeng Wang
Quanyu Dai
Zhenhua Dong
Xi Xiao
Xiuqiang He
18
159
0
26 Sep 2021
Trust your neighbors: A comprehensive survey of neighborhood-based
  methods for recommender systems
Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems
A. Nikolakopoulos
Xia Ning
Christian Desrosiers
George Karypis
OffRL
54
29
0
09 Sep 2021
How Powerful is Graph Convolution for Recommendation?
How Powerful is Graph Convolution for Recommendation?
Yifei Shen
Yongji Wu
Yao Zhang
Caihua Shan
Jun Zhang
Khaled B. Letaief
Dongsheng Li
GNN
33
100
0
17 Aug 2021
Reenvisioning Collaborative Filtering vs Matrix Factorization
Reenvisioning Collaborative Filtering vs Matrix Factorization
Vito Walter Anelli
Alejandro Bellogín
Tommaso Di Noia
Claudio Pomo
16
26
0
28 Jul 2021
RecVAE: a New Variational Autoencoder for Top-N Recommendations with
  Implicit Feedback
RecVAE: a New Variational Autoencoder for Top-N Recommendations with Implicit Feedback
Ilya Shenbin
Anton M. Alekseev
E. Tutubalina
Valentin Malykh
Sergey I. Nikolenko
BDL
DRL
18
196
0
24 Dec 2019
A Troubling Analysis of Reproducibility and Progress in Recommender
  Systems Research
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research
Maurizio Ferrari Dacrema
Simone Boglio
Paolo Cremonesi
Dietmar Jannach
15
196
0
18 Nov 2019
1