ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03350
  4. Cited By
Bayesian Optimization using Deep Gaussian Processes

Bayesian Optimization using Deep Gaussian Processes

7 May 2019
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
    GP
ArXivPDFHTML

Papers citing "Bayesian Optimization using Deep Gaussian Processes"

14 / 14 papers shown
Title
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
34
0
0
16 Jul 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
27
1
0
25 Feb 2024
Accelerating material discovery with a threshold-driven hybrid
  acquisition policy-based Bayesian optimization
Accelerating material discovery with a threshold-driven hybrid acquisition policy-based Bayesian optimization
Ahmed Shoyeb Raihan
H. Khosravi
Srinjoy Das
Imtiaz Ahmed
39
3
0
16 Nov 2023
Heuristic-free Optimization of Force-Controlled Robot Search Strategies
  in Stochastic Environments
Heuristic-free Optimization of Force-Controlled Robot Search Strategies in Stochastic Environments
Bastian Alt
Darko Katic
Rainer Jäkel
Michael Beetz
23
6
0
15 Jul 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
41
1
0
07 Jun 2022
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
19
6
0
11 Dec 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
11
30
0
04 Jul 2021
Good practices for Bayesian Optimization of high dimensional structured
  spaces
Good practices for Bayesian Optimization of high dimensional structured spaces
E. Siivola
Javier I. González
Andrei Paleyes
Aki Vehtari
30
37
0
31 Dec 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Combinatorial Black-Box Optimization with Expert Advice
Combinatorial Black-Box Optimization with Expert Advice
Hamid Dadkhahi
Karthikeyan Shanmugam
Jesus Rios
Payel Das
Samuel C. Hoffman
T. Loeffler
S. Sankaranarayanan
25
16
0
06 Jun 2020
Learning Non-Stationary Space-Time Models for Environmental Monitoring
Learning Non-Stationary Space-Time Models for Environmental Monitoring
S. Garg
Amarjeet Singh
F. Ramos
32
37
0
27 Apr 2018
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
127
391
0
02 Mar 2013
1