Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02898
Cited By
A Generative Model for Sampling High-Performance and Diverse Weights for Neural Networks
7 May 2019
Lior Deutsch
Erik Nijkamp
Yu Yang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Generative Model for Sampling High-Performance and Diverse Weights for Neural Networks"
26 / 26 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
393
10,591
0
17 Feb 2020
Neural Network Quine
Oscar Chang
Hod Lipson
43
23
0
15 Mar 2018
Essentially No Barriers in Neural Network Energy Landscape
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
MoMe
111
432
0
02 Mar 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
83
750
0
27 Feb 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
71
140
0
26 Feb 2018
Bayesian Hypernetworks
David M. Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
UQCV
BDL
59
139
0
13 Oct 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
52
597
0
13 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
144
460
0
06 Mar 2017
Diversified Texture Synthesis with Feed-forward Networks
Yijun Li
Chen Fang
Jimei Yang
Zhaowen Wang
Xin Lu
Ming-Hsuan Yang
44
268
0
05 Mar 2017
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
459
5,372
0
05 Nov 2016
Topology and Geometry of Half-Rectified Network Optimization
C. Freeman
Joan Bruna
192
235
0
04 Nov 2016
Learning feed-forward one-shot learners
Luca Bertinetto
João F. Henriques
Jack Valmadre
Philip Torr
Andrea Vedaldi
62
471
0
16 Jun 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
108
2,006
0
14 Jun 2016
A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
Srikrishna Karanam
Mengran Gou
Ziyan Wu
Angels Rates-Borras
Mario Sznaier
Richard J. Radke
90
58
0
31 May 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,306
0
06 Jun 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
310
4,179
0
21 May 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
323
18,613
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
254
1,198
0
30 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
126
1,385
0
10 Jun 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
195
1,318
0
03 Jun 2013
1